

LACROSSE UNIVERSITY

A PAPER SUBMITTED TO
THE FACULTY OF THE DIVISON OF SCIENCES

IN CANDIDACY FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

By
Ayesha Asghar

October 2, 2006

Copyright © 2006 by Ayesha Asghar
All rights reserved

To Zainab

 Page iv

Contents

PREFACE ... V

ACKNOWLEDGEMENTS ... VI

1. INTRODUCTION ... 1

2. TRANSACTIONS ... 2

3. CONCURRENCY CONTROL .. 4
3.1. HYBRID CONCURRENCY ... 7
3.2. BEHAVIORAL CONCURRENCY ... 8
3.3. DESIGNING CONCURRENT UPDATE CLASSES .. 11

3.3.1. Semantics of Concurrent Update Counters ... 13
3.3.2. Semantics of Concurrent Update Bags .. 14
3.3.3. Semantics of Concurrent Update Dictionaries .. 16
3.3.4. Semantics of Concurrent Update Queues .. 17

4. IMPLEMENTATION TECHNIQUES ... 20
4.1. CONCURRENT UPDATE READ SETS ... 20

4.1.1. The Redo Log .. 20
4.1.2. Partitioning the Solution .. 21

4.2. CONSIDERATIONS FOR USING CONCURRENT UPDATE OBJECTS ... 23
5. CONCLUSION .. 25

BIBLIOGRAPHY ... 26

 Page v

PREFACE

The aim of this Applied Knowledge Paper is to give a deep insight on the basics and

components of concurrency control. A detailed understanding has been given for its

implementation techniques.

The document starts by introducing transactions followed by concurrency control.

Further the types of concurrency have been discussed. Designing concurrent update classes

have been talked about next. Followed by the implementation techniques have been

elucidated.

Finally, the document wraps up the paper by giving a quick overview of the paper. The author

of the paper hopes that this discussion will serve as a comprehensive guideline for the readers.

 Page vi

ACKNOWLEDGEMENTS

I would like to thank the auspicious instructors of Lacrosse University under whose guidance

I’ve been able to come up with this report. I thank them for their cooperation through out and

also for resolving all problems and every issue that I faced.

Next, I would like to thank my family who provided me with all the sources and material

required for making this possible. Lastly; I would like to thank God Almighty who gave me

the strength and will power to complete this piece of work.

 Page 1

1. Introduction

Today object oriented databases (OODB) are being used in large scale applications in a

variety of industries including telecommunications, banking, manufacturing, insurance, and

shipping. These applications are characterized by having complex data, that is, data which is

represented in the highly-interconnected graphs of an object model.

Object databases are very good at storing the complex data model, but it is generally up to the

application developer to figure out how to scale the application so that it runs efficiently with

many concurrent users. The purpose of this paper is to explore various techniques that can be

used in object oriented databases to achieve high concurrency.

This paper first provides background information about transactions and several concurrency

control techniques, then the difference between physical consistency and logical consistency

are explored. Finally, several specialized container classes are introduced to show how logical

(behavioral) consistency can be implemented and how they can be used to improve

concurrency and simplify application development.

 Page 2

2. Transactions

Any discussion of transactions begins with an understanding of their ACID properties:

§ Atomicity: A transaction allows for the grouping of one or more changes to objects in a

database to form an atomic or indivisible operation. That is, either all of the changes

occur or none of them do. If for any reason a transaction cannot be completed,

everything this transaction changed can be restored to the state it was in prior to the start

of the transaction with an abort or rollback operation.

§ Consistency: Transactions always operate on a consistent view of the database and

when they end always leave the database in a consistent state. While changes are being

made to a database, inconsistent state that occurs during the process of performing

updates are hidden so that whether the transaction commits or aborts the database is

always left in a consistent state.

§ Isolation: To a given transaction, it should appear as though it is running all by itself on

the database. The effects of other concurrent transactions are invisible to this

transaction, and the effects of this transaction are invisible to others until the transaction

is committed.

§ Durability: Once a transaction is committed, its effects are guaranteed to persist even in

the event of subsequent system failures. Until the transaction commits, not only are

changes made by that transaction not durable, but are guaranteed not to persist in the

face of a system failure.

Transactions provide a programming model for databases that define a starting point,

indicated by a “transactionBegin” command, followed by a sequence of operations against the

database, and terminated with either a “transactionCommit” or “transactionAbort” command.

 Page 3

A transactional model that supports all the ACID properties provides a simplified framework

in which a programmer has a clear understanding of what to expect from the behaviour of the

system.

 Page 4

3. Concurrency Control

Concurrency control is the technique used to maintain the consistency and isolation properties

of transactions and is required when two concurrent transactions try to simultaneously

perform read or write operations on the same objects. Read consistency is defined as requiring

that all reads in a transaction are performed against the same state of the database, while write

(update) consistency guarantees that the order of the operations on objects in the database

doesn’t affect the outcome.

Databases may implement various forms of consistency support and concurrency control

mechanisms. To insure read consistency two basic mechanisms are typically used:

§ Guaranteed view – all transactions are guaranteed a consistent view of the object

repository based on the state of the database at the point in time that the transaction

begins. This is a characteristic of the database and may not apply to all databases.

§ Read locks – the programmer must acquire locks on objects as they are read to ensure

that other users cannot modify them.

If an application requires a consistent view for certain read-only transactions, such as

generating reports, or gathering data to be presented on a customer display, then a database

that supports a guaranteed view is generally better because:

§ The application is easier to develop and maintain because the programmer doesn’t need

to be concerned about managing the read locks and the possible deadlocks that can

occur when interacting with transactions using write locks.

§ The application runs more efficiently because databases that implement the guaranteed

view usually provide very efficient read access to the data. This is possible because they

 Page 5

do not need to consult a lock manager and are able to access the data by following a

pointer to the specific view.

§ A higher level of concurrency (thus an increase in overall throughput) can be attained

because there is no conflict between the concurrent readers and writers.

If an application is written in such a way that all the update or write operations in concurrent

transactions are on disjoint sets of objects, then no conflicts exist and the transactions can

commit successfully without any additional concurrency control to slow down their

performance. This however, is rarely the case and in most applications, some form of

concurrency control must be used to ensure that transactions are able to commit successfully.

There are three basic techniques used to manage update concurrency in a database:

§ Last in Wins – The last concurrent writer of the data “wins” in the sense that their

changes are preserved in the database, but this can lead to unexpected results. For

example: User A fetches the value of object O and sees the value 3. Then concurrent

user B changes the value of object O to 7 and commits. Meanwhile User A adds 1 to

the value of O (that it read) and stores the resulting value 4 into object O. The result is

that User B’s updates were lost. Most applications will not be able to use this

technique.

§ Optimistic – objects are accessed and updated in a private view as needed during the

transaction. Before the transaction commits, the transaction must perform checking to

determine if its operations are consistent with the operations of other transactions that

committed since it started. If the consistency checks fail, the commit is not successful

and the changes made during the transaction must be aborted. The updaters are

“optimistic” in that they don’t expect that there will be a conflict very often and in the

 Page 6

case of failure they can try the update again. This is also referred to as “First in Wins”

since the second attempt to commit an object can fail in the commit with transaction

conflicts.

§ Pessimistic – a lock or timestamp ordering is used to prevent other transactions from

accessing or updating an object while the transaction is active. Two-phase locking is a

frequently used because it is simple and avoids the problem of cascading aborts.

In many object oriented applications predicting which objects are going to be read or written

can be tricky because the behavior of a method may depend on a value found. For example, a

method may discover that a stock item has a low inventory and then invoke a reorder method.

The reorder method may be very simple, but it may need to access a number of supplier

objects and determine which is best in the current situation. This unpredictability of the

behavior generally makes it more difficult to develop applications using only pessimistic

concurrency control mechanisms because lock management becomes more difficult and the

probability of deadlock is increased. Thus, in object oriented systems optimistic concurrency

techniques are more frequently used.

One of the keys to the optimistic approach is the detection of conflicts. Consistency failures

are usually classified as either Read or Write failures. Read consistency insures that data read

during a transaction hasn’t been changed by another transaction during the time the

transaction was active (between the start of a transaction and when it is committed). These are

referred to as Read/Write conflicts because the current transaction’s reads conflict with the

writes of other transactions. Write consistency insures that an object written during a

transaction was not written by another transaction during the time the transaction was active.

These conflicts are referred to as Write/Write conflicts because the current transaction’s

writes conflict with the writes of others.

 Page 7

Some databases can provide multiple levels of consistency enforcement:

§ Full consistency checks require that all objects read or written by a transaction must not

have been written by a concurrent transaction that committed while a transaction was

active.

§ Concurrency can be increased (commit failures reduced) by only performing write

checks, but this should only be done when the application can tolerate the fact that its

update may be made based on data that may have changed since it was read. Workflow

applications take advantage of this capability.

It is also important to consider the granularity of the consistency checking mechanism. Some

systems may attempt to optimize the checking by performing checks on courser grained units

such as the pages on which the objects reside. This can improve performance in cases where

the objects are clustered so that objects that would cause conflicts are on different pages.

While possible, this is often very cumbersome and in general finer grained consistency

checking on individual objects will allow more concurrent updates to be processed.

3.1. Hybrid Concurrency

In general, fine grained locking or concurrency checks provide more concurrency. However,

in object oriented database systems that support both optimistic and pessimistic mechanisms

applications can be developed that take advantage of both. One approach is to identify the

specific operations that must succeed (cannot suffer the cost of being aborted and retried) and

to use “guardian objects” to control their access to a group of objects. Operations that must

succeed then use the pessimistic features of the database system to acquire/release locks on

the guardian objects, thereby insuring their success. One major advantage of using the

“guardian objects” pattern is that the total number of objects that one needs to get locks on is

 Page 8

greatly reduced, which decreases the number of the locking combinations that need to be

analyzed to prevent deadlocks. In general, throughput can be increased because only the

transactions that need to lock these groups of objects are strictly serialized by the locking

mechanism and the other optimistic transactions can proceed unimpeded.

3.2. Behavioral Concurrency

Applications that can take advantage of hybrid concurrency models are often limited by the

cost of analyzing the possible interactions and the complexity of developing the appropriate

mix of concurrency controls to satisfy the application requirements. Because the operations

are not encapsulated, maintaining a hybrid system is very difficult. Someone updating an

existing application must understand all the possible interactions to know whether the change

will preserve the desired behavior.

In these applications, the data is generally viewed as a simple type on which the only valid

operations are reading and writing. From this viewpoint, data exists as atomic entities apart

from the context in which they are used and low level operations either read or write the data.

Similarly, the concurrency control mechanism monitors the reads and writes of concurrent

transactions to determine if a conflict has occurred.

Object databases can provide an alternative to read/write consistency checking because the

objects are manipulated at a higher semantic level than the data that they encapsulate. The

operations (behaviors) of objects can be much more sophisticated than simple reads and

writes. By carefully defining the semantics of the object behaviors and understanding the

visibility of side-effects, concurrency conflicts can be avoided in many situations. In addition,

when a conflict does occur, the higher level behavior of objects can be used to resolve a low

level read/write conflict while maintaining the consistency of the objects. Objects which

support behavioral concurrency can increase transaction throughput by increasing the number

 Page 9

of simultaneous operations being performed on the database. By building a reusable toolset of

object classes that support concurrent update behaviors, much of the complexity of developing

highly concurrent applications can be eliminated.

The initial inspiration for behavioral concurrency comes from research in concurrency control

for abstract data types [Herlihy, 1990], [Schwarz and Spector, 1984], [Weihl 1989] and

semantic concurrency control [Skarra and Zdonik, 1989]. In [Skarra and Zdonik, 1989], the

authors distinguish between transaction semantics and data semantics for determining

concurrency properties. Using the transaction approach, the concurrency properties are

defined according to the semantics of the transactions and the data they manipulate. Using the

data approach, the concurrency semantics on abstract data types can be defined according to

the operations on the type. When this data approach to concurrency is integrated into an object

database, it can provide a uniform, concurrent behavior for objects that is modular and

decentralized. It is modular in that the class encapsulates the complexity of the concurrent

behaviors and it is decentralized in that each instance of the class manages the concurrent

access to the contained data.

By analyzing the behaviors defined in the class, one can determine which operations can

occur concurrently without making the state of the object inconsistent. To aid this analysis, it

is helpful to determine whether sequences of operations are commutative. Two operations are

said to be commutative if they can occur in either order and lead to the same consistent

database state. An example of a commutative operation is a sequence of deposit operations on

an account balance object. Two transactions can both deposit into the account and the final

account balance is the same, regardless of the order in which the transactions are committed.

However, a removal operation is not commutative with a deposit, since it is possible that the

removal may fail if it occurs before the deposit.

 Page 10

To analyze the consistency of operations on an object, the interleaved operations by

concurrent transactions can be organized into schedules. By definition, commutability of the

operations implies that any reordering of commutative operations in a schedule is still valid.

For non-commutative operations, however, the order of the operations in the schedule

determines the possible outcomes. As mentioned in [Weihl, 1989], the set of all possible

schedules is constrained by the storage system model. The typical model assumes an update-

in-place storage system in which locking is used to provide consistency. In contrast, a

database system can be built upon a storage system model that does not modify objects in

place [Bretl, et. al., 1989]. By not modifying in place a read operation in a transaction is

repeatable, providing a “guaranteed view”. With optimistic concurrency control, when a

transaction attempts to commit, the system validates that the set of objects read and written do

not conflict with objects read and written by other transactions that committed in the interim.

This is classified as backward validation as defined in [Harder, 1984].

To demonstrate how the different storage system models, affect the schedules, consider the

following example; using a bag, a simple collection of objects. Suppose transactions T1 and

T2 start at the same time with an empty bag B in the database. Tl adds an element to B while

T2 attempts to remove that element. In Herlihy's analysis, "when a transaction commits or

aborts, news, of the event propagates asynchronously through the system. A schedule's

commit and abort steps represent the arrival of such news at an object." Thus, the outcome of

the concurrent transactions is dependent upon whether T1 commits its addition before T2

attempts the removal. If T1 commits first, then T2 sees the element in B and can successfully

perform the removal. This schedule could not occur in a system that is based on a guaranteed

view using optimistic concurrency control because the removal operation by T2 would always

fail, since in T2's point of view B was empty and did not contain the element.

 Page 11

3.3. Designing Concurrent Update Classes

In designing the semantics for classes that support behavioral concurrency, it is important to

distinguish between physical and logical conflicts. Physical conflicts are the low-level

conflicts that are a result of concurrent transactions reading and writing the same objects.

Logical conflicts arise due to non-commutative operations performed by concurrent

transactions. These conflicts are defined by the high-level semantics of the object, and must

be detected to prevent the database from becoming inconsistent. To implement behavioral

concurrency semantics in Concurrent Update (CU) classes, the underlying physical conflict

detection mechanisms must be extended to include the higher-level semantics. When

transactions attempt to commit their modifications, they may still experience read-write and

write-write conflicts based upon access to the internal states of objects. These conflicts may

be valid logical conflicts as well, or could be physical conflicts that can be resolved

transparently to the end user by using the internal behavior of the object to merge the changes.

To extend the physical conflict detection mechanism to implement the concurrent update

classes the underlying object database must be active, that is, it must support the execution of

object behaviors so that the high-level semantics can be exposed during the attempt to commit

objects to the database. Passive object databases, ones that only support queries and updates to

the underlying data store of objects would be difficult to extend to take advantage of

behavioral concurrency because they cannot execute the methods needed to implement the

behavioral semantics.

In the design of Concurrent Update classes it is important to use a non-locking approach

because the locking of objects forces an ordering of the transactions and decreases the

availability of objects, thereby reducing throughput. As a result, an optimistic concurrency

control mechanism is required to achieve optimal performance. The general approach to the

 Page 12

design of Concurrent Update classes is to design the physical structure of the object so that the

operations are less likely to have physical conflicts and to resolve the physical conflicts

detected in the commit consistency checks by using the high-level semantics to merge the

changes of the current transaction into the changes that were previously committed by other

concurrent transactions.

Another important consideration for Concurrent Update classes is whether they are used in

applications where read-write conflicts are considered important. For applications where read-

write conflicts are important, all non-commutative operations must fail, while in applications

where read-write conflicts can be tolerated without loss of consistency, then only non-

commutative write operations fail, and read-write conflicts can be ignored. For example, a

warehouse application may need to keep track of the number of items in a storage bin. Some

transactions add to the bin when items are received from the manufacturer and stocked on the

warehouse floor. Other transactions remove items from the bin when they are ordered by a

retailer and removed from the warehouse floor. An application that maintains a count of the

number of items in a bin is characterized by many small decrement operations and a few large

increment operations each day, and a single read (accessing the count) operation at the end of

each day to determine if additional items need to be purchased. The read operation does not

need to prevent concurrent modification, since a guaranteed view provides a sufficiently

accurate count for purchasing decisions. Ignoring read-write conflicts in this case provides a

performance benefit, since more schedules are considered valid. Also, the implementation of

the Concurrent Update classes with these semantics is more efficient, since fewer physical

conflicts must be resolved.

In the sections that follow, several CU classes are defined. For each CU class its functional

semantics are defined along with the kind of application it is intended to support. The

 Page 13

concurrency semantics of each CU class is described by the sequences of operations that are

or are not commutative. Finally, an example application is provided where the use of the CU

class is appropriate.

3.3.1. Semantics of Concurrent Update Counters

A counter object keeps a numerical count (positive or negative) based on the increment and

decrement messages it receives. It understands messages to increment or decrement itself by

one (or by a given amount), and to answer its current value. Under traditional concurrency

semantics, concurrent modification of a counter object results in a physical conflict. Because

the increment and decrement operations are commutative, these operations do not logically

conflict when performed by concurrent transactions.

At least three kinds of counters with different CU semantics can be defined. The first kind is

CuCounter which has the following concurrency semantics: transactions that modify the count

value do not conflict with other transactions that modify or read the count value. Thus, two

transactions may both increment a CuCounter object and be able to commit successfully, or a

transaction that reads the value of the count can commit successfully despite other

transactions modifying the count. This CuCounter is intended to support applications such as

the warehouse example described previously.

Another kind of counter is a CuPositiveCounter. With this counter, concurrent transactions

can modify the counter without conflict as long as the modifications do not cause the value of

the counter to become negative. If a transaction were to decrement a CuPositiveCounter such

that its value would become negative when other transaction's committed changes become

visible, then the transaction is not allowed to commit. Readers and writers do not conflict for a

CuPositiveCounter.

 Page 14

The third kind of counter, a CuAccount, provides semantics like the Account defined in

[Herlihy, 1990]. For this counter, all non-commutative operations fail. This means that a

transaction that reads the account value will conflict with another transaction that increments

or decrements the value. As with CuPositiveCounter, concurrent increment and decrement

operations succeed if the value of the counter remains positive. This type of counter is

appropriate in modeling financial accounts where a transaction that reads the count must fail

to commit if a concurrent transaction has committed a modification to the account.

3.3.2. Semantics of Concurrent Update Bags

A bag is a container for objects, and more than one occurrence of the same object can reside

in a bag. A bag defines messages to add, remove, and query its contents. For the most part, a

CuBag behaves like a normal bag; however, CuBag's concurrency semantics are based upon

commutability of write operations and readers not conflicting with writers. If the resulting

state of a CuBag does not depend upon the order in which transactions commit their

modifications, then the operations are logically conflict-free. For example, multiple

transactions that only add to the CuBag reach the same state regardless of the order in which

the transactions commit. Therefore, multiple adders to a CuBag do not logically conflict.

For some applications, addition and removal of objects to a CuBag are also commutative. If a

transaction adds one object to the CuBag, and another transaction removes a different object

from the CuBag, it does not matter in which order the transactions commit their changes.

Consequently, neither transaction will experience conflict. Transactions that remove from the

CuBag do not conflict with transactions that add to the CuBag if the removed objects are

disjoint from the added objects.

An interesting case arises when analyzing the addition and removal of the only occurrence of

an object in a CuBag. Within a single transaction, addition and removal of the same object are

 Page 15

not commutative due to the semantics of removal. For example, if the removal occurs after the

addition, then the removal is successful. If the removal instead occurs before the addition of

the object, then the removal operation fails because the object is not present in the CuBag.

However, when these operations are performed by concurrent transactions, the operations are

commutative. The operations are commutative because the removal operation always fails,

regardless of the order in which the transactions attempt to commit. This is since the addition

of the object is not visible to the transaction attempting its removal.

The final case to analyze is when multiple transactions are removing objects from a CuBag.

As with additions, a transaction that removes from the CuBag will not conflict with another

transaction that removes different objects from the CuBag. The CuBag reaches the same state

regardless of the order in which the removals are committed. The one case where the

removals are not commutative is when two transactions combined attempt to remove more

occurrences of an object than are contained in the CuBag. For example, suppose initially there

are four occurrences of an object in the CuBag. One transaction tries to remove three

occurrences, while another transaction tries to remove two occurrences. The order in which

the transactions attempt to commit determines which one is successful. In this case, to

maintain reasonable concurrency semantics, the second transaction that attempts to commit

must fail. Otherwise, two transactions would successfully remove more occurrences than there

were in the CuBag.

CuBags are intended to support applications where multiple transactions write (add to or

remove from) a bag, and concurrent readers are not prohibited from committing due to

concurrent modifications to the bag. For example, applications may need to keep a collection

of all instances of a class. Keeping a collection of all instances is typically done by defining a

class variable or static field that holds a collection of the objects, and instances are added to

 Page 16

the collection when they are created. CuBags are useful in this situation to prevent multiple

instance creators from experiencing conflicts. Another example is an application that collects

financial transaction records for statistical calculations at the end of the day. In this scenario,

multiple users can add their records to a CuBag throughout the day without experiencing

conflict.

3.3.3. Semantics of Concurrent Update Dictionaries

A dictionary is a collection of objects that can be accessed by explicitly assigned keys or

names. A hash dictionary is an optimized implementation of a dictionary that utilizes a

hashing algorithm to access or update an element based on its key. Users insert or update an

entry in the dictionary using the "put(key, value)" method. If the given key is not in the

dictionary, a new entry is added. If the key is already present in the dictionary, the new value

replaces the existing value for that key. Dictionaries also have behavior to retrieve the value

for a given key and to remove a key.

There are two kinds of Concurrent Update dictionaries with slightly different concurrency

semantics. One kind of dictionary, a CuHashDirectory, has the same concurrency semantics as

the directories in [Schwarz and Spector, 1984], in which commutability of all read and write

operations determines the valid sequences of operations. Another type of dictionary, a

CuHashDictionary, relaxes the commutability requirement for readers and writers of the same

key. For both kinds of dictionary, addition and removal of different keys are commutative so

these operations do not logically conflict. Addition and removal of the same key are not

commutative within a single transaction, but are commutative when performed by concurrent

transactions. The removal operation of the same key always fails since one transaction does

not have visibility of the other transaction's addition. Therefore, addition and removal of the

same key in a CuHashDictionary do not logically conflict.

 Page 17

For both kinds of dictionaries, concurrent additions of the same key are not commutative.

Therefore, if two transactions add an entry with the same key, the first to commit will succeed

and the second one will experience logical conflict. Similarly, concurrent removals of the

same key are not commutative so one of the transactions that attempted the removal will

experience conflict.

Given the concurrency semantics defined above, a CuHashDictionary (or a CuHashMap) is

appropriate in applications where read-write conflicts are not important. For example, a

CuHashDictionary can be used as a shared name space where transactions place objects into

the dictionary to make them visible to other transactions. In applications where users expect to

be adding disjoint entries into the dictionary and do not want to conflict with others who are

accessing the dictionary, a CuHashDictionary can increase throughput. A CuHashDirectory is

appropriate in applications where a transaction must not succeed if the value read for a key

has been modified by another committed transaction.

3.3.4. Semantics of Concurrent Update Queues

A queue is a collection that allows users to add and remove objects in first-in-first-out (FIFO)

order. To maintain the absolute ordering, concurrent transactions that modify the queue must

conflict. However, if the strict first-in-first-out behavior is relaxed a little, then the

concurrency can be increased. The Weakly FIFO Queue in [Schwarz and Spector, 1984], and

the Semi-Queue defined in [Weihl, 1989] have similar semantics. The common property

between these definitions is that entries added to the queue are treated "fairly", i.e., they will

not become stuck in the queue but will arrive at the head of the queue at about the same time

as other entries committed concurrently.

 Page 18

Whether the order of the queue is absolute, addition and removal operations are not

commutative with each other. These operations are not commutative because different

orderings of the operations lead to different final states. Consequently, to increase

concurrency, commutability is not used as the basis for logical conflicts for CuQueues.

Instead, the concurrency semantics for CuQueues is defined as follows: Transactions that add

to the queue will not logically conflict with other transactions that add to the queue. A single

transaction that removes objects from the queue will not conflict with other transactions that

add to the queue. Logical conflict does occur if more than one transaction attempts to remove

from a CuQueue.

This removal behavior distinguishes the CuQueue from Schwarz's Weakly FIFO Queue. The

primary reason for this distinction is due to the constraints of the underlying storage system.

In a system that maintains a guaranteed view it is not possible for multiple concurrent

removers from a CuQueue to see the uncommitted state. Thus, they would all attempt to

remove the same element and experience conflict. The CuQueue implementation is thus best

for applications that involve multiple producers (transactions that add to the CuQueue) and a

single consumer (a transaction that removes items from the CuQueue). It is possible to

construct a system that achieves the effect of two consumers by using three CuQueues. The

producers initially add their entries to Q1. These entries are then removed from Ql and placed

in either Q2 or Q3 depending upon the current backlog of work or other servicing criteria. In

this way individual consumers are only removing from a single CuQueue and they don’t

experience conflict.

To maintain the order in which objects are added to the queue without experiencing

concurrency conflicts, a timestamp is included in the queue entry. This allows a transaction

performing a removal from the queue to select the element with the oldest timestamp. In

 Page 19

systems with a guaranteed view, transactions can see only committed results, so it is possible

for a transaction to remove an entry that is committed before one that was added to the queue

at an earlier time.

CuQueues are currently being used in numerous production applications. In one application,

CuQueues are used to pass objects between disjoint servers. This allows distributed databases

to share data by placing objects in another server's CuQueue without conflicting with other

servers doing the same. Each server is assigned a CuQueue and consumes objects from it. A

server can place objects in any number of other servers' CuQueues. In another application,

clients place objects in a single CuQueue which is used to gather data for report generation.

The report generator removes objects from the CuQueue when a report is requested.

 Page 20

4. Implementation Techniques

Once the concurrency semantics of a CU object are defined, there are several techniques that

can be utilized to implement those semantics. As mentioned earlier, the implementation of CU

classes still operates according to the rules of the underlying conflict detection mechanism.

That is, concurrent modifications to the same object result in physical conflict at commit time.

Through careful design one can avoid the physical conflict in the first place, and when

conflicts do occur, the conflicts can be resolved where analysis has determined that concurrent

transactions can commit their modifications without making the state of the object

inconsistent.

4.1. Concurrent Update Read Sets

One technique for avoiding read-write conflict is to notify the underlying conflict detection

engine that certain objects are part of a CU object. At commit time, this knowledge is used to

ignore conflicts that are known not to upset the higher-level semantics of the object. For

example, a CuReadSet for a transaction is defined to hold objects on which a read operation

should not conflict with other transactions' modifications. The implementation of the methods

for CU classes puts these objects in the CuReadSet. Then at commit time, if any conflicting

objects (not including objects that experience write-write conflict) are also in the CuReadSet,

they are excluded from the conflict set.

4.1.1. The Redo Log

In implementing CU objects, even though a physical conflict can occur, the higher-level

semantics may allow us to continue if we can ensure the database remains in a consistent

state. To produce a consistent view of the database, the transaction that experienced a conflict

must integrate other transactions' modifications with its own modifications.

 Page 21

However, the replaying of operations can fail if another transaction commits a change that

invalidates one of the replayed operations. When an operation on a CU object cannot be

replayed successfully, it is due to a valid concurrency conflict and the transaction is unable to

commit. This is because only operations that were initially successful are replayed when a

physical conflict is detected. For example, suppose a transaction Tl attempts to remove the

last occurrence of an object X in a CuBag. It is possible that another transaction T2 commits

its removal of X first. When Tl attempts to commit, it experiences a physical conflict that it

attempts to resolve. Tl refreshes its view of the CuBag and replays the operations. When the

removal of X is replayed, it fails because X is no longer present in the CuBag, and

consequently Tl' s attempt to commit will fail.

To allow for the replaying of operations when a physical conflict is detected, a redo log can be

implemented to record the modifications made to certain CU objects. The redo log is like

intentions described in [Herlihy, 1990]. However, in addition to recording the changes to a

CU object, a redo log may also contain the results of read operations. This is done to support

CU objects such as CuAccount and CuHashDirectory, where read operations must be

repeatable, since complex behaviour may have been executed based upon the value that was

read.

4.1.2. Partitioning the Solution

An optimization for implementing concurrent update classes is to avoid conflicts in the first

place. The goal is to partition an aggregate object into multiple subcomponent objects

referenced by a root object which represents the original aggregate. All messages are directed

to the root object, which performs at least two duties.

 Page 22

1. For operations that access the contents of the object, the root object is responsible for

collecting the contents of the subcomponents to arrive at the aggregate contents.

2. For operations that update the contents of the object, the root determines which

subcomponents are modified.

With this technique, the possibility of concurrency is reduced by designing the subcomponent

selection criteria such that it is unlikely two concurrent transactions will modify the same

subcomponent.

One example of partitioning is in the implementation of the CuHashDictionary. In this case,

the hash table itself provides a natural partitioning of the data. Each entry in the table

represents a cluster bucket and only operations on the same cluster bucket need to be analyzed

for the CU behaviour.

The implementation of the CuCounter class illustrates another way partitioning an object into

multiple subcomponents. Rather than implement a counter as a single numeric value, a

CuCounter is implemented as multiple values, each encapsulated in its own subcomponent

object. The root object of a CuCounter is an array of the subcomponents. When the

CuCounter is sent the message to answer the current value of the count, the operation answers

the sum of the individual subcomponents' values. When the CuCounter is sent the message to

increment or decrement its value, the CuCounter modifies the value in only one of the

subcomponents. The CuCounter chooses the subcomponent according to the current

transaction's unique session identifier, which is used to index into the array of subcomponents.

This technique guarantees that the transactions of concurrent sessions do not modify the same

subcomponent, and thus never experience write-write conflicts.

 Page 23

A third example of partitioning can be found in the implementation of a CuQueue. Normally a

queue would contain a pointer to the head of the queue and a pointer to the tail. Instead,

consider a CuQueue which contains a reference to two separate objects, one which

encapsulates the reference to the head and another that encapsulates a reference to the tail.

With this structure, producers only update the intermediate head object and consumers only

update the intermediate tail object. In this way, a single producer and consumer can operate on

the queue with no underlying write-write conflicts. For multiple producers operating

concurrently on the CuQueue, when a physical write-write conflict does occur on the

intermediate object, the add operation can be replayed to resolve the conflict and leave the

CuQueue in a consistent state.

4.2. Considerations for Using Concurrent Update Objects

Using CU objects allows application implementers to build concurrent applications without

having to write special code to avoid common concurrency conflicts. Although the functional

semantics of CU objects is easily understood and matches the behaviour of their non-CU

counterparts, implementers need to understand the concurrency semantics of CU objects

before blindly applying them in all situations. Sometimes concurrency conflicts are desirable

and programmers should carefully consider the requirements of their applications before using

CU objects.

Another consideration for using CU objects is the time and space costs of using them. In most

cases, using a CU object involves creating and maintaining additional objects that remain

hidden from the user. The implementation of a CU object can involve multiple subcomponent

objects. These subcomponents may take up space that is proportional to the maximum number

of users. Also, time is spent maintaining the subcomponents when the CU object is modified.

 Page 24

If a redo log is used, additional temporary objects are created to maintain a history of

operations on the CU object.

Despite the space and time costs of CU objects, the advantage is that they allow more

concurrency than either optimistic or pessimistic approaches. In some use cases studied, the

CU classes have increased throughput from 14% to 37% without impacting the CPU load on

the system.

 Page 25

5. Conclusion

This paper provides an overview of transactions and techniques that can be used to achieve

high concurrency in object oriented databases. Database features that make it easier to

develop concurrent applications include:

§ Guaranteed view – consistent reads

§ Optimistic concurrency control – backward validation

§ Support for multiple concurrency approaches in the underlying database.

§ Active databases – supports execution of object behaviours.

The “guardian objects” pattern can be used in some applications to combine optimistic and

pessimistic concurrency control mechanisms to increase overall concurrency.

Finally, behavioural concurrency is introduced and is shown to be very useful technique for

managing concurrency in an object-oriented database. It takes advantage of the natural

encapsulation of objects to hide the internal structure and complexity while extending the

behaviours of the methods so that they can be invoked concurrently. By developing a reusable

toolset of object classes that support concurrent update behaviours, much of the complexity

developing and maintaining highly concurrent applications can be eliminated.

 Page 26

Bibliography

[Bretl, B., et al, 1989]
Bretl, B., et al.: "The GemStone Data Management System" in Object-Oriented Concepts, Databases, and
Applications, edited by Kim and Lochovsky, ACM Press, 1989.

[Harder, 1984]
Harder, T.: "Observations on Optimistic Concurrency Control Schemes", Information Systems, Vol. 9, June
1984.

[Herlilhy, 1990]
Herlihy, M.: "Apologizing Versus Asking Permission: Optimistic Concurrency Control for Abstract Data
Types", ACM Transactions on Database Systems, Vol. 15, No.1, March 1990."Indexed Associative Access" in
GemStone Programming Guide, Chapter 9, Servio Corporation, 1994.

[Schwarz and Spector, 1984]
Schwarz, P. and Spector, A.: "Synchronizing Shared Abstract Types", ACM Transactions on Computing
Systems, Vol. 13, No.1, August 1984.

[Skarra and Zdonik, 1989]
Skarra, A. and Zdonik, S.: "Concurrency Control and Object-Oriented Databases" in Object-Oriented Concepts,
Databases, and Applications, edited by Kim and Lochovsky, ACM Press, 1989.

[Weihl, 1989]
Weihl, W. E.: "Local Atomicity Properties: Modular Concurrency Control for Abstract Data Types", ACM
Transactions on Programming Languages and Systems, Vol. 11. No.2, April 1989.

