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PREFACE 

 

This paper is a collection of algorithms for sorting. The descriptions given are brief and 

intuitive, with just enough theory thrown in to elucidate the sorting concepts. I assume one 

knows a high-level language, such as C++, and that are familiar with programming concepts 

including arrays and pointers.  

 
The first section gives an introduction to algorithms and various basic concepts associated to 

it. The next section presents most commonly used sorting algorithms. Source code, examples 

and analysis for each algorithm, in MS Visual C++, is included.  

 
The last section critically evaluates the sorting algorithms, throws light on the importance and 

application of sorting algorithms and concludes on a note explaining the need for 

understanding the algorithms. 
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1. Introduction 

1.1. Purpose 

 
The purpose of this paper is to describe a well-formed and a thorough analysis of the sorting 

algorithms used in practice by programmers. This paper also gives an insight into algorithms 

and their analysis plus performance. 

  
It focuses on the most commonly used sorting algorithms, chalks out their pros and cons. An 

empirical analysis has been given to elucidate the efficiency concerns. Further it has been 

explained in depth using general algorithms and examples written in MS Visual C++. 

  
This paper provides a deep understanding of the need and benefits of sorting algorithms. This 

paper will assist the novice programmers to have a better understanding of sorting algorithms 

and their application. While, the expert programmers will also agree upon the comparison and 

concept details provided. 

 

1.2. Scope 

 
The paper provides answers to what, when, how and who questions related to algorithms, such 

as: 

 
§ What are algorithms? 

§ What is algorithm analysis and performance? 

§ Commonly used sorting algorithms. 

§ Source Codes and examples for sorting algorithms. 

§ Benefits and need for sorting algorithms. 
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2. Algorithms 

2.1. Overview 
 
 
An algorithm, named after the ninth century scholar Abu Jafar Muhammad Ibn Musu Al-

Khowarizmi is a set of rules for carrying out calculation either by hand or on a machine. It is a 

finite step-by-step procedure to achieve a required result. 

 

In its most general sense, an algorithm is any set of detailed instructions which results in a 

predictable end-state from a known beginning. Algorithms are only as good as the instructions 

given, however, and the result will be incorrect if the algorithm is not properly defined. 

 
A common example of an algorithm would be instructions for assembling a model airplane. 

Given the starting set of a number of marked pieces, one can follow the instructions given to 

result in a predictable end-state: the completed airplane. Misprints in the instructions, or a 

failure to properly follow a step will result in a faulty end product. 

 

A computer program is another pervasive example of an algorithm. Every computer program 

is simply a series of instructions (of varying degrees of complexity) in a specific order, 

designed to perform a specific task.  

 
The most famous algorithm in history dates well before the time of the ancient Greeks: this is 

Euclid's algorithm for calculating the greatest common divisor of two integers. 

 

2.1.1. The Classic Multiplication Algorithm 
 

Multiplication, the American way 
 
Multiply the multiplicand one after another by each digit of the multiplier taken from right to 

left. 
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Fig. 1.  Multiplication, the American way 
 

 

Multiplication, the English way 
 
Multiply the multiplicand one after another by each digit of the multiplier taken from left to 

right. 

 
 

Fig. 2.  Multiplication, the English way 
 
 
 
Algorithmic is a branch of computer science that consists of designing and analyzing 

computer algorithms. Where, the “design” pertain to the description of algorithm at an 

abstract level by means of a pseudo language, and  proof of correctness that is, the algorithm 
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solves the given problem in all cases. And the “analysis” deals with performance evaluation 

(complexity analysis).  

 

2.2. Performance 
 
Two important ways to characterize the effectiveness of an algorithm are its space complexity 

and time complexity. The time complexity of an algorithm concerns determining an 

expression of the number of steps needed as a function of the problem size. Since the step 

count measure is somewhat coarse, one does not aim at obtaining an exact step count. Instead, 

one attempts only to get asymptotic bounds on the step count. Asymptotic analysis makes use 

of the O (Big Oh) notation. Two other notational constructs used by computer scientists in the 

analysis of algorithms are Θ (Big Theta) notation and Ω (Big Omega) notation. 

 
The performance evaluation of an algorithm is obtained by totalling the number of 

occurrences of each operation when running the algorithm. The performance of an algorithm 

is evaluated as a function of the input size n and is to be considered modulo a multiplicative 

constant. 

 
The following notations are commonly use notations in performance analysis and used to 

characterize the complexity of an algorithm. 

 
Θ-Notation (Same order) 
 
This notation bounds a function to within constant factors. It says f(n) = Θ(g(n)) if there exist 

positive constants n0, c1 and c2 such that to the right of n0 the value of f(n) always lies between 

c1g(n) and c2g(n) inclusive.  
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Fig. 3.  Algorithm performance; Θ-Notation 
 
 

O-Notation (Upper Bound) 
 

This notation gives an upper bound for a function to within a constant factor. One writes f(n) 

= O(g(n)) if there are positive constants n0 and c such that to the right of n0, the value of f(n) 

always lies on or below cg(n).  

   
   

 
 

Fig. 4.  Algorithm performance; O-Notation 
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Ω-Notation (Lower Bound) 
 

This notation gives a lower bound for a function to within a constant factor. One writes f(n) = 

Ω(g(n)) if there are positive constants n0 and c such that to the right of n0, the value of f(n) 

always lies on or above cg(n).  

 
 

Fig. 5.  Algorithm Performance; Ω-Notation 
 
 

2.3. Analysis 
 
The complexity of an algorithm is a function g(n) that gives the upper bound of the number of 

operation (or running time) performed by an algorithm when the input size is n. 

 
There are two interpretations of upper bound. 

Worst-case Complexity 

 
The running time for any given size input will be lower than the upper bound except possibly 

for some values of the input where the maximum is reached. 

Average-case Complexity  
 
The running time for any given size input will be the average number of operations over all 

problem instances for a given size.  
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Because, it is quite difficult to estimate the statistical behaviour of the input, most of the time 

one contents oneself to a worst case behaviour. Most of the time, the complexity of g(n) is 

approximated by its family o(f(n)) where f(n) is one of the following functions. n (linear 

complexity), log n (logarithmic complexity), na where a≥2 (polynomial complexity), an 

(exponential complexity). 

  

2.4. Optimality 
 
Once the complexity of an algorithm has been estimated, the question arises whether this 

algorithm is optimal. An algorithm for a given problem is optimal if its complexity reaches 

the lower bound over all the algorithms solving this problem. For example, any algorithm 

solving “the intersection of n segments” problem will execute at least n2 operations in the 

worst case even if it does nothing but print the output. This is abbreviated by saying that the 

problem has Ω(n2) complexity. If one finds an O(n2) algorithm that solve this problem, it will 

be optimal and of complexity Θ(n2). 

 

2.5. Reduction 
 
Another technique for estimating the complexity of a problem is the transformation of 

problems, also called problem reduction. As an example, suppose one knows a lower bound 

for a problem A, and that would like to estimate a lower bound for a problem B. If one can 

transform A into B by a transformation step whose cost is less than that for solving A, then B 

has the same bound as A. 

 
The Convex hull problem nicely illustrates "reduction" technique.  A lower bound of Convex-

hull problem established by reducing the sorting problem (complexity: Θ(nlogn)) to the 

Convex hull problem. 
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2.6. Classes 
 

While there is no universally accepted breakdown for the various types of algorithms, there 

are common classes that algorithms are frequently agreed to belong to. Among these are: 

 

§ Dynamic Programming Algorithms: This class remembers older results and attempts to 

use this to speed the process of finding new results.  

 
§ Greedy Algorithms: Greedy algorithms attempt not only to find a solution, but to find the 

ideal solution to any given problem.  

 
 
§ Brute Force Algorithms: The brute force approach starts at some random point and 

iterates through every possibility until it finds the solution.  

 
§ Randomized Algorithms: This class includes any algorithm that uses a random number 

at any point during its process.  

 
§ Branch and Bound Algorithms: Branch and bound algorithms form a tree of sub-

problems to the primary problem, following each branch until it is either solved or lumped 

in with another branch.  

 
§ Simple Recursive Algorithms: This type of algorithm goes for a direct solution 

immediately, and then backtracks to find a simpler solution.  

 
§ Backtracking Algorithms: Backtracking algorithms test for a solution, if one is found the 

algorithm has solved, if not it recurs once and tests again, continuing until a solution is 

found.  
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§ Divide and Conquer Algorithms: A divide and conquer algorithm is similar to a branch 

and bound algorithm, except it uses the backtracking method of recurring in tandem with 

dividing a problem into sub-problems.  

 
In addition to these general classes, algorithms may also be divided into two primary groups: 

serial algorithms, which are designed for serial execution, wherein each operation is enacted 

in a linear order; and parallel algorithms, used with computers running parallel processors (as 

well as existing in the natural world in the case of, for example, genetic mutation over a 

species), wherein a number of operations are run in parallel. 
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3. Sorting Algorithms 

 
One of the fundamental problems of computer science is ordering a list of items. There's a 

plethora of solutions to this problem, known as sorting algorithms. Some sorting algorithms 

are simple and intuitive, such as the bubble sort. Others, such as the quick sort are extremely 

complicated, but produce lightening-fast results.  

 
Sorting is one of the most common tasks performed by computers today. It has been estimated 

that as much as one quarter of the running time of all the world’s computers is spent 

performing various types of sorting. Sorting is used to arrange names and numbers in 

meaningful ways. For example, it is relatively easy to look up the phone number of a friend 

because the names in the phone book have been sorted into alphabetical order. This example 

clearly illustrates one of the main reasons that sorting large quantities of information is 

desirable. That is, sorting greatly improves the efficiency of searching. If one was to open a 

phone book, and find that the names were not presented in any logical order, it would take an 

incredibly long time to look up someone’s phone number!  

 
Sorting can be performed in many ways. Over time, several methods have been devised to sort 

information following specific algorithms. Some examples of these algorithms are the 

Selection Sort, the Binary Sort, the Bubble Sort, the Merge Sort, the Heap Sort, the Quick 

Sort, and the Radix Sort. These will be explored in depth in this paper.  

 
Some obvious questions that arise from the above discussion are: "Which sort method should 

one use? Is one sort algorithm clearly the best?" The answer to the second question is quite 

simple. There is no sort algorithm that is clearly better than all others in all circumstances. 

The answer to the first question, however, is difficult. The particular situations faced by 

people who need to sort information will invariably dictate what type of sort algorithm should 

be used. Some factors that will play in the decision-making process are the complexity of the 
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algorithm, the size of the data structure (an array, for example) to be sorted, and the time it 

takes for programmers to understand and implement various algorithms. For example, a small 

business that manages a list of customer names could easily use an algorithm such as the 

bubble sort. This algorithm is easy to understand and implement. Because of the fact the data 

set to be sorted is relatively small; a simple algorithm such as the bubble sort will perform 

satisfactorily. However, a large corporation with millions of customers would experience 

horrible delays and massive lag time trying to sort their records with a bubble sort algorithm. 

They would be well advised to spend the extra time learning a more efficient algorithm, like 

the Quick Sort, to sort their data more efficiently. In actual fact, even the Quick Sort may not 

be perfectly suited for this example. 

 
Below are listed the seven of the most common sorting algorithms and are discussed in-detail 

with the help of analysis, source codes and examples.  

 

3.1. Bubble Sort 

3.1.1. Algorithm Analysis 
 
The bubble sort is the oldest and simplest sort in use. Unfortunately, it's also the slowest.  

 
The bubble sort works by comparing each item in the list with the item next to it, and 

swapping them if required. The algorithm repeats this process until it makes a pass all the way 

through the list without swapping any items (in other words, all items are in the correct order). 

This causes larger values to "bubble" to the end of the list while smaller values "sink" towards 

the beginning of the list.  

 
The bubble sort is generally considered to be the most inefficient sorting algorithm in 

common usage. Under best-case conditions (the list is already sorted), the bubble sort can 

approach a constant O(n) level of complexity. General-case is an abysmal O(n2).  
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While the insertion, selection, and shell sorts also have O(n2) complexities, they are 

significantly more efficient than the bubble sort.  

 

Pros 

 
§ Simplicity and ease of implementation. 

 

Cons  
 
§ Horribly inefficient.  
 
 
3.1.2. Empirical Analysis 

 

 
 

Fig. 6.  Bubble Sort Efficiency 
 
 
The graph clearly shows the n2 nature of the bubble sort.  

 
A fair number of algorithm purists (which means they've probably never written software for 

a living) claim that the bubble sort should never be used for any reason. Realistically, there 
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isn't a noticeable performance difference between the various sorts for 100 items or less, and 

the simplicity of the bubble sort makes it attractive. The bubble sort shouldn't be used for 

repetitive sorts or sorts of more than a couple hundred items.  

 

3.1.3. Source Code 
Below is the basic bubble sort algorithm.  

 
void bubbleSort(int numbers[], int array_size) 

{ 
int i, j, temp; 

 
for (i = (array_size - 1); i >= 0; i--) 
{ 

for (j = 1; j <= i; j++) 
{ 

if (numbers[j-1] > numbers[j]) 
{ 
temp = numbers[j-1]; 
numbers[j-1] = numbers[j];  
numbers[j] = temp; 
} 

} 
} 

} 
 

3.1.4. Example 
 
A sample MS Visual C++ program that demonstrates the use of the bubble sort can be seen in 

Appendix A. 

  

3.2. Heap Sort 

3.2.1. Algorithm Analysis 
 
The heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the merge and 

quick sorts it doesn't require massive recursion or multiple arrays to work. This makes it the 

most attractive option for very large data sets of millions of items.  
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The heap sort works as it name suggests - it begins by building a heap out of the data set, and 

then removing the largest item and placing it at the end of the sorted array. After removing the 

largest item, it reconstructs the heap and removes the largest remaining item and places it in 

the next open position from the end of the sorted array. This is repeated until there are no 

items left in the heap and the sorted array is full. Elementary implementations require two 

arrays - one to hold the heap and the other to hold the sorted elements.  

 
To do an in-place sort and save the space the second array would require, the algorithm below 

"cheats" by using the same array to store both the heap and the sorted array. Whenever an 

item is removed from the heap, it frees up a space at the end of the array that the removed 

item can be placed in.  

 

Pros 

 
§ In-place and non-recursive, making it a good choice for extremely large data sets. 

 
Cons 

 
§ Slower than the merge and quick sorts.  
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3.2.2. Empirical Analysis 
 
 

 
 

Fig. 7.  Heap Sort Efficiency 
 
 
 
As mentioned above, the heap sort is slower than the merge and quick sorts but doesn't use 

multiple arrays or massive recursion like they do. This makes it a good choice for really large 

sets, but most modern computers have enough memory and processing power to handle the 

faster sorts unless over a million items are being sorted.  

 
The "million item rule" is just a rule of thumb for common applications - high-end servers and 

workstations can probably safely handle sorting tens of millions of items with the quick or 

merge sorts. But if one is working on a common user-level application, there's always going 

to be some yahoo who tries to run it on junk machine older than the programmer who wrote it, 

so better safe than sorry.  
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3.2.3. Source Code 
 
Below is the basic heap sort algorithm. The siftDown() function builds and reconstructs the 

heap.  

 
void heapSort(int numbers[], int array_size) 

{ 
int i, temp; 

 
for (i = (array_size / 2)-1; i >= 0; i--) 

siftDown(numbers, i, array_size); 
 

for (i = array_size-1; i >= 1; i--) 
{  temp = numbers[0]; 

numbers[0] = numbers[i]; 
numbers[i] = temp; 
siftDown(numbers, 0, i-1); 

} 
} 

 
void siftDown(int numbers[], int root, int bottom) 

{ 
int done, maxChild, temp; 

 
done = 0; 

 
while ((root*2 <= bottom) && (!done)) 

{ 
if (root*2 == bottom) 
maxChild = root * 2; 
 
else if (numbers[root * 2] > numbers[root * 2 + 1]) 
maxChild = root * 2; 
 
else 
maxChild = root * 2 + 1; 

 
if (numbers[root] < numbers[maxChild]) 

{ 
temp = numbers[root]; 
numbers[root] = numbers[maxChild]; 
numbers[maxChild] = temp; 
root = maxChild; 
} 

else 
done = 1; 

} 
} 
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3.2.4. Example 
 
A sample Microsoft Visual C++ program that demonstrates the use of the heap sort can be 

referred in Appendix B.  

 

3.3. Insertion Sort 

3.3.1. Algorithm Analysis 
 
The insertion sort works just like its name suggests - it inserts each item into its proper place 

in the final list. The simplest implementation of this requires two list structures - the source 

list and the list into which sorted items are inserted. To save memory, most implementations 

use an in-place sort that works by moving the current item past the already sorted items and 

repeatedly swapping it with the preceding item until it is in place.  

 
Like the bubble sort, the insertion sort has a complexity of O(n2). Although it has the same 

complexity, the insertion sort is a little over twice as efficient as the bubble sort.  

 

Pros 
 
§ Relatively simple and easy to implement. 

 

Cons 
 
§ Inefficient for large lists.  
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3.3.2. Empirical Analysis 
 
 

 
 

Fig. 8.  Insertion Sort Efficiency 
 
 
 
The graph demonstrates the n2 complexity of the insertion sort.  

 
The insertion sort is a good middle-of-the-road choice for sorting lists of a few thousand items 

or less. The algorithm is significantly simpler than the shell sort, with only a small trade-off in 

efficiency. At the same time, the insertion sort is over twice as fast as the bubble sort and 

almost 40% faster than the selection sort. The insertion sort shouldn't be used for sorting lists 

larger than a couple thousand items or repetitive sorting of lists larger than a couple hundred 

items.  

 

3.3.3. Source Code 
 
Below is the basic insertion sort algorithm.  
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void insertionSort(int numbers[], int array_size) 
{ 
int i, j, index; 
for (i=1; i < array_size; i++) 

{ 
index = numbers[i]; 
j = i; 
 
while ((j > 0) && (numbers[j-1] > index)) 

{ 
numbers[j] = numbers[j-1]; 
j = j - 1; 
} 

 
numbers[j] = index; 
} 

} 
 

3.3.4. Example 
 
A sample MS Visual C++ program that demonstrates the use of the insertion sort is given in 

Appendix C.  

 

3.4. Merge Sort 

3.4.1. Algorithm Analysis 
 
The merge sort splits the list to be sorted into two equal halves, and places them in separate 

arrays. Each array is recursively sorted, and then merged back together to form the final sorted 

list. Like most recursive sorts, the merge sort has an algorithmic complexity of O(n log n).  

 
Elementary implementations of the merge sort make use of three arrays - one for each half of 

the data set and one to store the sorted list in. The below algorithm merges the arrays in-place, 

so only two arrays are required. There are non-recursive versions of the merge sort, but they 

don't yield any significant performance enhancement over the recursive algorithm on most 

machines 
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Pros 

§ Marginally faster than the heap sort for larger sets. 

Cons 

§ At least twice the memory requirements of the other sorts; recursive.  

 

3.4.2. Empirical Analysis 
 

 

 
 

Fig. 9.  Merge Sort Efficiency 
 
 
 
The merge sort is slightly faster than the heap sort for larger sets, but it requires twice the 

memory of the heap sort because of the second array. This additional memory requirement 

makes it unattractive for most purposes - the quick sort is a better choice most of the time and 

the heap sort is a better choice for very large sets.  
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Like the quick sort, the merge sort is recursive which can make it a bad choice for 

applications that run on machines with limited memory.  

 

3.4.3. Source Code 
 
Below is the basic merge sort algorithm.  

 
void mergeSort(int numbers[], int temp[], int array_size) 
{ 
  m_sort(numbers, temp, 0, array_size - 1); 
} 
 
 
void m_sort(int numbers[], int temp[], int left, int right) 
{ 

  int mid; 
 

  if (right > left) 
  { 
    mid = (right + left) / 2; 
    m_sort(numbers, temp, left, mid); 
    m_sort(numbers, temp, mid+1, right); 

  
   merge(numbers, temp, left, mid+1, right); 

   } 
} 
 
void merge(int numbers[], int temp[], int left, int mid, int right) 
{ 

  int i, left_end, num_elements, tmp_pos; 
 
  left_end = mid - 1; 
  tmp_pos = left; 
  num_elements = right - left + 1; 

 
  while ((left <= left_end) && (mid <= right)) 
   { 
     if (numbers[left] <= numbers[mid]) 
      { 

      temp[tmp_pos] = numbers[left]; 
      tmp_pos = tmp_pos + 1; 
      left = left +1; 
} 

    else 
      { 
        temp[tmp_pos] = numbers[mid]; 

      tmp_pos = tmp_pos + 1; 
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             mid = mid + 1; 
      } 

}  
 
  

 while (left <= left_end) 
    { 

    temp[tmp_pos] = numbers[left]; 
    left = left + 1; 
    tmp_pos = tmp_pos + 1; 
} 

 
while (mid <= right) 

{ 
   temp[tmp_pos] = numbers[mid]; 

         mid = mid + 1; 
   tmp_pos = tmp_pos + 1; 

    } 
 

for (i=0; i <= num_elements; i++) 
   { 

    numbers[right] = temp[right]; 
    right = right - 1; 
  } 

} 
 

3.4.4. Example 
 
A sample C program that demonstrates the use of the merge sort can be seen in Appendix D.  

 

3.5. Quick Sort 

3.5.1. Algorithm Analysis 
 
The quick sort is an in-place, divide-and-conquer, massively recursive sort. As a normal 

person would say, it's essentially a faster in-place version of the merge sort. The quick sort 

algorithm is simple in theory, but very difficult to put into code. 

 
The recursive algorithm consists of four steps (which closely resemble the merge sort):  

 
§ If there is/are one or less elements in the array to be sorted, return immediately.  
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§ Pick an element in the array to serve as a "pivot" point. (Usually the left-most element 

in the array is used.)  

§ Split the array into two parts - one with elements larger than the pivot and the other 

with elements smaller than the pivot.  

§ Recursively repeat the algorithm for both halves of the original array.  

 
The efficiency of the algorithm is greatly impacted by which element is chosen as the pivot 

point. The worst-case efficiency of the quick sort, O(n2), occurs when the list is sorted and the 

left-most element is chosen. Randomly choosing a pivot point rather than using the left-most 

element is recommended if the data to be sorted isn't random. As long as the pivot point is 

chosen randomly, the quick sort has an algorithmic complexity of O(n log n).  

 

Pros 

§ Extremely fast. 

Cons 

§ Very complex algorithm, massively recursive.  
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3.5.2. Empirical Analysis 
 

 

 
 

Fig. 10.  Quick Sort Efficiency 
 
 
 
The quick sort is by far the fastest of the common sorting algorithms. It's possible to write a 

special-purpose sorting algorithm that can beat the quick sort for some data sets, but for 

general-case sorting there isn't anything faster.  

 
As soon as students figure this out, their immediate impulse is to use the quick sort for 

everything - after all, faster is better, right? It's important to resist this urge - the quick sort 

isn't always the best choice. As mentioned earlier, it's massively recursive (which means that 

for very large sorts, one can run the system out of stack space pretty easily). It's also a 

complex algorithm - a little too complex to make it practical for a one-time sort of 25 items, 

for example.  
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With that said, in most cases the quick sort is the best choice if speed is important (and it 

almost always is). Use it for repetitive sorting, sorting of medium to large lists, and as a 

default choice when one is not really sure which sorting algorithm to use. Ironically, the quick 

sort has horrible efficiency when operating on lists that are mostly sorted in either forward or 

reverse order - avoid it in those situations.  

 

3.5.3. Source Code 
 
Below is the basic quick sort algorithm. 

 
 void quickSort(int numbers[], int array_size) 
{ 
  q_sort(numbers, 0, array_size - 1); 
} 
 
 
void q_sort(int numbers[], int left, int right) 
{ 
   int pivot, l_hold, r_hold; 
 

l_hold = left; 
r_hold = right; 
pivot = numbers[left]; 

 
while (left < right) 
  { 
    while ((numbers[right] >= pivot) && (left < right)) 
       right--; 
 
    if (left != right) 
    { 

numbers[left] = numbers[right]; 
left++; 

    } 
 

    while ((numbers[left] <= pivot) && (left < right)) 
left++; 

 
    if (left != right) 
    { 
      numbers[right] = numbers[left]; 
      right--; 
    } 
  } 
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  numbers[left] = pivot; 
  pivot = left; 
  left = l_hold; 
  right = r_hold; 

 
  if (left < pivot) 
    q_sort(numbers, left, pivot-1); 

 
  if (right > pivot) 
    q_sort(numbers, pivot+1, right); 

} 
 

3.5.4. Example 
 
A sample C program that demonstrates the use of the quick sort may be seen in Appendix E.  

 
3.6. Selection Sort 

3.6.1. Algorithm Analysis 
 
The selection sort works by selecting the smallest unsorted item remaining in the list, and then 

swapping it with the item in the next position to be filled. The selection sort has a complexity 

of O(n2).  

 

Pros 

§ Simple and easy to implement. 

 

Cons 

§ Inefficient for large lists, so similar to the more efficient insertion sort that the insertion 

sort should be used in its place.  
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3.6.2. Empirical Analysis 
 
 

 

 
 

Fig. 11.  Selection Sort Efficiency 
 
 
 
The selection sort is the unwanted stepchild of the n2 sorts. It yields a 60% performance 

improvement over the bubble sort, but the insertion sort is over twice as fast as the bubble sort 

and is just as easy to implement as the selection sort. In short, there really isn't any reason to 

use the selection sort - use the insertion sort instead.  

 
If one really wants to use the selection sort for some reason, try to avoid sorting lists of more 

than a 1000 items with it or repetitively sorting lists of more than a couple hundred items.  

 

3.6.3. Source Code 
 
Below is the basic selection sort algorithm.  
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void selectionSort(int numbers[], int array_size) 
{ 
   int i, j; 

 int min, temp; 
 

  for (i = 0; i < array_size-1; i++) 
  { 

min = i; 
    for (j = i+1; j < array_size; j++) 
    { 
      if (numbers[j] < numbers[min]) 
        min = j; 
    } 

 
temp = numbers[i]; 
numbers[i] = numbers[min]; 
numbers[min] = temp; 

  } 
} 
 

3.6.4. Example 

A sample C program that demonstrates the use of the selection sort is given in Appendix F.  

 

3.7. Shell Sort 

3.7.1. Algorithm Analysis 
 
Invented by Donald Shell in 1959, the shell sort is the most efficient of the O(n2) class of 

sorting algorithms. Of course, the shell sort is also the most complex of the O(n2) algorithms.  

The shell sort is a "diminishing increment sort", better known as a "comb sort" to the 

unwashed programming masses. The algorithm makes multiple passes through the list, and 

each time sorts a number of equally sized sets using the insertion sort. The size of the set to be 

sorted gets larger with each pass through the list, until the set consists of the entire list. (Note 

that as the size of the set increases, the number of sets to be sorted decreases.) This sets the 

insertion sort up for an almost-best case run each iteration with a complexity that approaches 

O(n).  

 



  Page 29  
 

The items contained in each set are not contiguous - rather, if there are i sets then a set is 

composed of every i-th element. For example, if there are 3 sets then the first set would 

contain the elements located at positions 1, 4, 7 and so on. The second set would contain the 

elements located at positions 2, 5, 8, and so on; while the third set would contain the items 

located at positions 3, 6, 9, and so on.  

 
The size of the sets used, for each iteration; has a major impact on the efficiency of the sort. 

Several Heroes Of Computer ScienceTM, including Donald Knuth and Robert Sedgewick, 

have come up with more complicated versions of the shell sort that improve efficiency by 

carefully calculating the best sized sets to use for a given list.  

Pros 

§ Efficient for medium-size lists. 

Cons 

§ Somewhat complex algorithm, not nearly as efficient as the merge, heap, and quick sorts.  
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3.7.2. Empirical Analysis 
 
 

 
 
 

Fig. 12.  Shell Sort Efficiency 
 
 
 
The shell sort is by far the fastest of the N2 class of sorting algorithms. It's more than 5 times 

faster than the bubble sort and a little over twice as fast as the insertion sort, its closest 

competitor.  

 
The shell sort is still significantly slower than the merge, heap, and quick sorts, but its 

relatively simple algorithm makes it a good choice for sorting lists of less than 5000 items 

unless speed is hyper-critical. It's also an excellent choice for repetitive sorting of smaller 

lists.  

 

3.7.3. Source Code 

Below is the basic shell sort algorithm. 
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void shellSort(int numbers[], int array_size) 
{ 
  int i, j, increment, temp; 
 
  increment = 3; 
  while (increment > 0) 
  { 
    for (i=0; i < array_size; i++) 
    { 
      j = i; 
      temp = numbers[i]; 
      while ((j >= increment) && (numbers[j-increment] > temp)) 
      { 
        numbers[j] = numbers[j - increment]; 
        j = j - increment; 
      } 
      numbers[j] = temp; 
    } 
    if (increment/2 != 0) 
      increment = increment/2; 
    else if (increment == 1) 
      increment = 0; 
    else 
      increment = 1; 
  } 
}  
 

3.7.4. Example 

A sample C program that demonstrates the use of the shell sort can be reviewed in Appendix 

G.  
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4. Applications of Sorting 

An important key to algorithm design is to use sorting as a basic building block, because once 

a set of items is sorted, many other problems become easy. Consider the following 

applications:    

§ Searching - Binary search enables one to test whether an item is in a dictionary in 

time, once the keys are all sorted. Search preprocessing is perhaps the single most 

important application of sorting.  

§ Closest pair - Given a set of n numbers, how does one finds the pair of numbers that have 

the smallest difference between them? After the numbers are sorted, the closest pair of 

numbers will lie next to each other somewhere in sorted order. Thus a linear-time scan 

through them completes the job, for a total of time including the sorting.    

§ Element uniqueness - Are there any duplicates in a given a set of n items? The most 

efficient algorithm is to sort them and then do a linear scan though them checking all 

adjacent pairs. This is a special case of the closest-pair problem above, where one might 

ask if there is a pair separated by a gap of zero.    

§ Frequency distribution - Given a set of n items, which element’s occurrence has the 

largest number of times in the set? If the items are sorted, one can sweep from left to right 

and count them, since all identical items will be lumped together during sorting. To find 

out how often an arbitrary element k occurs, start by looking up k using binary search in a 

sorted array of keys. By walking to the left of this point until the element is not k and then 

walking to the right, one can find this count in time, where c is the number of 

occurrences of k. The number of instances of k can be found in time by using binary 
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search to look for the positions of both and , where is arbitrarily small, and then 

taking the difference of these positions.    

§ Selection - What is the kth largest item in the set? If the keys are placed in sorted order in 

an array, the kth largest can be found in constant time by simply looking at the kth position 

of the array. In particular, the median element appears in the (n/2)nd position in sorted 

order.    

 

 

 
Fig. 13.  Constructing the convex hull of points in the plane 

 

 

§ Convex hulls - Given n points in two dimensions, what is the polygon of smallest area that 

contains them all? The convex hull is like a rubber band stretched over the points in the 

plane and then released. It compresses to just cover the points, as shown in the figure 

above. The convex hull gives a nice representation of the shape of the points and is the 

most important building block for more sophisticated geometric algorithms. 

 But how can one use sorting to construct the convex hull? Once one has the points sorted 

by x-coordinate, the points can be inserted from left to right into the hull. Since the 

rightmost point is always on the boundary, it is known that it will be inserted into the hull. 

Adding this new rightmost point might cause others to be deleted, but one can quickly 

identify these points because they lie inside the polygon formed by adding the new point.  
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These points to delete would be neighbors of the previous point that are inserted, so they 

will be easy to find. The total time is linear after the sorting has been done.  

 

While some of these problems (particularly median and selection) can be solved in linear time 

using more sophisticated algorithms, sorting provides quick and easy solutions to all of these 

problems. It is a rare application whose time complexity is such that sorting proves to be the 

bottleneck, especially a bottleneck that could have otherwise been removed using more clever 

algorithmics. Don't ever be afraid to spend time sorting whenever one uses an efficient sorting 

routine.  
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5. Importance of Sorting 

 

By the time one graduates, computer science students are likely to have studied the basic 

sorting algorithms in their introductory programming class, then in their data structures class, 

and finally in their algorithms class. Why is sorting worth so much attention? There are 

several reasons:    

 
§ Sorting is the basic building block around which many other algorithms are built. By 

understanding sorting, one obtains an amazing amount of power to solve other problems.  

 
§ Historically, computers have spent more time sorting than doing anything else. A quarter 

of all mainframe cycles are spent sorting data [Knuth, 1973]. Although it is unclear 

whether this remains true on smaller computers, sorting remains the most ubiquitous 

combinatorial algorithm problem in practice.  

 
§ Sorting is the most thoroughly studied problem in computer science. Literally dozens of 

different algorithms are known, most of which possess some advantage over all other 

algorithms in certain situations. To become convinced of this, the reader is encouraged to 

browse through [Knuth, 1973], with hundreds of pages of interesting sorting algorithms 

and analysis.  

 
§ Most of the interesting ideas used in the design of algorithms appear in the context of 

sorting, such as divide-and-conquer, data structures, and randomized algorithms.  
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6. Critical Evaluation 

The common sorting algorithms can be divided into two classes by the complexity of their 

algorithms. Algorithmic complexity is a complex subject that would take too much time to 

explain here, but suffice it to say that there's a direct correlation between the complexity of an 

algorithm and its relative efficiency. Algorithmic complexity is generally written in a form 

known as Big-O notation, where the O represents the complexity of the algorithm and a value 

n represents the size of the set the algorithm is run against.  

 
For example, O(n) means that an algorithm has a linear complexity. In other words, it takes 

ten times longer to operate on a set of 100 items than it does on a set of 10 items (10 * 10 = 

100). If the complexity was O(n2) (quadratic complexity), then it would take 100 times longer 

to operate on a set of 100 items than it does on a set of 10 items.  

 
The two classes of sorting algorithms are O(n2), which includes the bubble, insertion, 

selection, and shell sorts; and O(n log n) which includes the heap, merge, and quick sorts.  

 
In addition to algorithmic complexity, the speed of the various sorts can be compared with 

empirical data. Since the speed of a sort can vary greatly depending on what data set it sorts, 

accurate empirical results require several runs of the sort be made and the results averaged 

together. The run times from one computer to another on will almost certainly vary from these 

results, but the relative speeds should be the same - the selection sort runs in roughly half the 

time of the bubble sort and it should run in roughly half the time on whatever system one uses.  

 
These empirical efficiency graphs are kind of like golf - the lowest line is the "best". Keep in 

mind that "best" depends on one’s situation - the quick sort may look like the fastest sort, but 

using it to sort a list of 20 items is kind of like going after a fly with a sledgehammer.  
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Fig. 14.  O(n2) Sorts 
 
 
 
As the graph pretty plainly shows, the bubble sort is grossly inefficient, and the shell sort 

blows it out of the water. Notice that the first horizontal line in the plot area is 100 seconds - 

these aren't sorts that one wants to use for huge amounts of data in an interactive application. 

Even using the shell sort, users are going to be twiddling their thumbs if one tries to sort much 

more than 10,000 data items.  

 
On the bright side, all of these algorithms are incredibly simple (with the possible exception 

of the shell sort). For quick test programs, rapid prototypes, or internal-use software they're 

not bad choices unless one really thinks one needs split-second efficiency.  
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Fig. 15.  O(n log n) Sorts 

 

 

Speaking of split-second efficiency, the O(n log n) sorts are where it's at. Notice that the time 

on this graph is measured in tenths of seconds, instead hundreds of seconds like the O(n2) 

graph.  

 
But as with everything else in the real world, there are trade-offs. These algorithms are 

blazingly fast, but that speed comes at the cost of complexity. Recursion, advanced data 

structures, multiple arrays - these algorithms make extensive use of those nasty things.  

 
In the end, the important thing is to pick the sorting algorithm that one thinks is appropriate 

for the task at hand.  
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7. Conclusion 

As a computer scientist, it is important to understand all of these types of algorithms so that 

one can use them properly. If one is working on an important piece of software, one will 

likely need to be able to estimate how fast it is going to run. Such an estimate will be less 

accurate without an understanding of runtime analysis. Furthermore, one needs to understand 

the details of the algorithms involved so that one will be able to predict if there are special 

cases in which the software won't work quickly, or if it will produce unacceptable results.  

 
Of course, there are often times when one will run across a problem that has not been 

previously studied. In these cases, one has to come up with a new algorithm, or apply an old 

algorithm in a new way. The more one knows about algorithms in this case, the better one’s 

chances are of finding a good way to solve the problem. In many cases, a new problem can be 

reduced to an old problem without too much effort, but one will need to have a fundamental 

understanding of the old problem in order to do this.  

 
As an example of this, let’s consider what a switch does on the Internet. A switch has N 

cables plugged into it, and receives packets of data coming in from the cables. The switch has 

to first analyze the packets, and then send them back out on the correct cables. A switch, like a 

computer, is run by a clock with discrete steps - the packets are send out at discrete intervals, 

rather than continuously. In a fast switch, one wants to send out as many packets as possible 

during each interval so they don't stack up and get dropped. The goal of the algorithm to 

develop here is to send out as many packets as possible during each interval, and also to send 

them out so that the ones that arrived earlier get sent out earlier. In this case it turns out that an 

algorithm for a problem that is known as "stable matching" is directly applicable to this 

problem, though at first glance this relationship seems unlikely. Only through pre-existing 

algorithmic knowledge and understanding can such a relationship be discovered.  
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The different algorithms that people study are as varied as the problems that they solve. 

However, chances are good that the problem one is trying to solve is similar to another 

problem in some respects.  

 
In short; by developing a good understanding of a large range of algorithms, one will be able 

to choose the right one for a problem and apply it properly.  
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Appendix A: Bubble Sort 

This program demonstrates the use of the bubble sort algorithm 

 

#include <iostream> 
#define NUM_ITEMS 10  
 
using std::cout; 
using std::endl; 
 
void bubbleSort(int numbers[], int array_size);  
int numbers[NUM_ITEMS];  
 
void main( )  

{  
int i;     
srand(0);    //seed random number generator 

 
for (i = 0; i < NUM_ITEMS; i++)  

numbers[i] = rand();   //fill array with random integers 
 

bubbleSort(numbers, NUM_ITEMS);  //perform bubble sort on array 
 

cout<<"Done with sort.\n";  
  

for (i = 0; i < NUM_ITEMS; i++)  
cout<<numbers[i]<<endl;  

}  
 
void bubbleSort(int numbers[], int array_size)  
{  

int i, j, temp;  
 

for (i = (array_size - 1); i >= 0; i--) 
{  

for (j = 1; j <= i; j++)  
{  

if (numbers[j-1] > numbers[j])  
{  
temp = numbers[j-1];  
numbers[j-1] = numbers[j];  
numbers[j] = temp;  
} 

   }  
}  

} 
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Appendix B: Heap Sort 

This program demonstrates the use of the heap sort algorithm. 
 
#include <iostream> 
#define NUM_ITEMS 10  
 
using std::endl; 
using std::cout; 
 
void heapSort(int numbers[], int array_size); 
void siftDown(int numbers[], int root, int bottom);  
 
int numbers[NUM_ITEMS];  
 
int main( )  
{  

int i;  
srand(0);   //seed random number generator 
 
for (i = 0; i < NUM_ITEMS; i++) 

numbers[i] = rand();    //fill array with random integers  
 
heapSort(numbers, NUM_ITEMS);    //perform heap sort on array 
cout<<"Done with sort.\n";  
 
for (i = 0; i < NUM_ITEMS; i++)  

cout<<numbers[i]<<endl;  
} 
 
void heapSort(int numbers[], int array_size) 
{  

int i, temp;  
for (i = (array_size / 2)-1; i >= 0; i--) 

siftDown(numbers, i, array_size);  
 
for (i = array_size-1; i >= 1; i--) 

{  
temp = numbers[0];  
numbers[0] = numbers[i]; 
numbers[i] = temp;  
siftDown(numbers, 0, i-1);  
}  

}  
 
void siftDown(int numbers[], int root, int bottom) 
{  

int done, maxChild, temp;  
done = 0;  
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while ((root*2 <= bottom) && (!done)) 
 {  
if (root*2 == bottom) 

maxChild = root * 2;  
 
else if (numbers[root * 2] > numbers[root * 2 + 1])  

maxChild = root * 2;  
 
else maxChild = root * 2 + 1;  
 
if (numbers[root] < numbers[maxChild])  

{  
temp = numbers[root]; 
numbers[root] = numbers[maxChild]; 
numbers[maxChild] = temp; root = maxChild; } else done = 1;  
}  

} 
} 
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Appendix C: Insertion Sort 

 
This program demonstrates the use of the insertion sort algorithm.  

 
#include<iostream> 
#define NUM_ITEMS 100  
 
void insertionSort(int numbers[], int array_size);  
int numbers[NUM_ITEMS];  
 
int main()  
{   

int i; 
srand(0);    //seed random number generator 

 
for (i = 0; i < NUM_ITEMS; i++) 

 numbers[i] = rand();   //fill array with random integers 
 

insertionSort(numbers, NUM_ITEMS);  //perform insertion sort on array 
cout<<"Done with sort.\n";  

 
for (i = 0; i < NUM_ITEMS; i++)  

cout<<numbers[i]); 
}  
 
void insertionSort(int numbers[], int array_size)  
{  

int i, j, index;  
 
for (i=1; i < array_size; i++)  
{  

index = numbers[i];  
j = i;  
 
while ((j > 0) && (numbers[j-1] > index))  
{  

numbers[j] = numbers[j-1]; j = j - 1;  
}  

numbers[j] = index;  
}  

} 
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Appendix D: Merge Sort 

 
This program demonstrates the use of the merge sort algorithm. 
 
 #include<iostream> 
 #define NUM_ITEMS 100  
 
void mergeSort(int numbers[], int temp[], int array_size); 
void m_sort(int numbers[], int temp[], int left, int right);  
void merge(int numbers[], int temp[], int left, int mid, int right);  
int numbers[NUM_ITEMS]; int temp[NUM_ITEMS];  
 
int main( ) 
{  

int i;  
srand(0);  //seed random number generator 
  
for (i = 0; i < NUM_ITEMS; i++)  

numbers[i] = rand();   //fill array with random integers 
 

mergeSort(numbers, temp, NUM_ITEMS);  //perform merge sort on array 
cout<<"Done with sort.\n";  

 
for (i = 0; i < NUM_ITEMS; i++) 

 cout<<numbers[i]; 
}  
 
void mergeSort(int numbers[], int temp[], int array_size) 
{  

m_sort(numbers, temp, 0, array_size - 1); 
}  
 
void m_sort(int numbers[], int temp[], int left, int right) 
{  

int mid;  
 
if (right > left)  
{  

mid = (right + left) / 2;  
m_sort(numbers, temp, left, mid);  
m_sort(numbers, temp, mid+1, right);  
merge(numbers, temp, left, mid+1, right);  

}  
}  
 
void merge(int numbers[], int temp[], int left, int mid, int right) 
{  

int i, left_end, num_elements, tmp_pos; 
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left_end = mid - 1;  
tmp_pos = left;  
num_elements = right - left + 1;  
 
while ((left <= left_end) && (mid <= right))  
{  

if (numbers[left] <= numbers[mid])  
{  

temp[tmp_pos] = numbers[left];  
tmp_pos = tmp_pos + 1; left = left +1; 

 }  
 
else  
{  

temp[tmp_pos] = numbers[mid];  
tmp_pos = tmp_pos + 1; mid = mid + 1;  

}  
}  
 
while (left <= left_end)  
{  

temp[tmp_pos] = numbers[left];  
left = left + 1;  
tmp_pos = tmp_pos + 1;  

}  
 
while (mid <= right)  
{  

temp[tmp_pos] = numbers[mid];  
mid = mid + 1;  
tmp_pos = tmp_pos + 1;  

}  
 
for (i=0; i <= num_elements; i++)  

{  
numbers[right] = temp[right]; right = right - 1;  

}  
} 
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Appendix E: Quick Sort 

 
This program demonstrates the use of the quick sort algorithm.  
 
#include <iostream> 
#define NUM_ITEMS 100  
 
void quickSort(int numbers[], int array_size);  
void q_sort(int numbers[], int left, int right);  
int numbers[NUM_ITEMS];  
 
int main( )  
{  

int i;  
srand(0);   //seed random number generator  
 
for (i = 0; i < NUM_ITEMS; i++)  

numbers[i] = rand();   //fill array with random integers 
 

quickSort(numbers, NUM_ITEMS);   //perform quick sort on array 
cout<<"Done with sort.\n";  
 
for (i = 0; i < NUM_ITEMS; i++)  

cout<<numbers[i]; 
}  
 
void quickSort(int numbers[], int array_size) 
{  

q_sort(numbers, 0, array_size - 1);  
}  
 
void q_sort(int numbers[], int left, int right)  
{  

int pivot, l_hold, r_hold;  
l_hold = left;  
r_hold = right;  
pivot = numbers[left];  
 
while (left < right)  
{  

while ((numbers[right] >= pivot) && (left < right))  
right--;  

 
if (left != right)  
{  

numbers[left] = numbers[right]; left++;  
}  
while ((numbers[left] <= pivot) && (left < right))  
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left++;  
 
if (left != right)  
{  

numbers[right] = numbers[left]; right--;  
}  

}  
 

numbers[left] = pivot;  
pivot = left;  
left = l_hold;  
right = r_hold;  
 
if (left < pivot)  

q_sort(numbers, left, pivot-1);  
 
if (right > pivot)  

q_sort(numbers, pivot+1, right);  
} 
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Appendix F: Selection Sort 

 
This program demonstrates the use of the selection sort algorithm.  
 
#include <iostteam> 
#define NUM_ITEMS 100  
 
void selectionSort(int numbers[], int array_size);  
int numbers[NUM_ITEMS];  
 
int main()  
{  

int i;  
srand(0);   //seed random number generator 
 
for (i = 0; i < NUM_ITEMS; i++)  

numbers[i] = rand();   //fill array with random integers 
 

selectionSort(numbers, NUM_ITEMS);   //perform selection sort on array 
cout<<"Done with sort.\n"; 
 
 for (i = 0; i < NUM_ITEMS; i++)  

cout<<numbers[i]<<endl;  
}  
 
void selectionSort(int numbers[], int array_size) 
{  

int i, j; int min, temp;  
 
for (i = 0; i < array_size-1; i++)  
{  

min = i;  
 
for (j = i+1; j < array_size; j++)  
{  

if (numbers[j] < numbers[min])  
min = j;  

}  
 
temp = numbers[i];  
numbers[i] = numbers[min];  
numbers[min] = temp;  

}  
} 
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Appendix G: Shell Sort 

 
This program demonstrates the use of the shell sort algorithm.  
 
#include<iostream> 
#define NUM_ITEMS 100  
 
void shellSort(int numbers[], int array_size);  
int numbers[NUM_ITEMS];  
 
int main( )  
{  

int i;  
srand(0);   //seed random number generator 
 
for (i = 0; i < NUM_ITEMS; i++) 

 numbers[i] = rand();   //fill array with random integers 
 
shellSort(numbers, NUM_ITEMS);   //perform shell sort on array 
cout<<"Done with sort.\n";  
 
for (i = 0; i < NUM_ITEMS; i++)  

cout<<numbers[i];  
}  
 
void shellSort(int numbers[], int array_size) 
{  

int i, j, increment, temp;  
increment = 3;  
 
while (increment > 0)  
{  

for (i=0; i < array_size; i++)  
{  

j = i; temp = numbers[i];  
 
while ((j >= increment) && (numbers[j-increment] > temp))  
{  

numbers[j] = numbers[j - increment];  
j = j - increment; 

 }  
 
numbers[j] = temp;  

}  
 
if (increment/2 != 0)  

increment = increment/2;  
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else if (increment == 1)  
increment = 0; else increment = 1;  

}  
} 
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