

There are two ways of constructing a software design. One way is to make it so simple that there
are obviously no deficiencies. And the other way is to make it so complicated that there are no
obvious deficiencies.

—C.A.R. Hoare

 i

Table of Contents

Table of Figures .. ii	
Question 1 ... 1	
Question 2 ... 8	
Question 3 ... 26	
Question 4 ... 27	
References ... 36	

 ii

Table of Figures

Figure 1: Return Books: Use Case Diagram ... 2	
Figure 2: Library System - Class Diagram ... 13	
Figure 3: Return Book - Sequence Diagram ... 26	

 1

Question 1

We ask you to conduct a preliminary analysis of a Porterhouse library use case called
Return Books. Each deliverable is worth 4 marks. [20 marks]

You should deliver:

a) An identification of the Actor(s) involved.

Answer:

The actors involved in this use case would be:
i. Librarian
ii. Bar code reader (Assumption: ONLY if the system commissioners thinks to

be reading ISBN & Volume IDs using bar code reader instead of manual
input)

b) A use case diagram, similar to figure 4.3 of Software construction using

Objects.

Answer:

 2

Librarian

Return Books

Pay Fine

<<include>>

Search Loan
<<include>>

Search Reservation

<<i
ncl

ude
>>

Search Volume

<<include>>

Log In

<<
in
cl
ud
e>
>

Log Out

<<include>>

Create Account

<<include>>

Update Volume Update Loan

<<extends>>
<<extends>>

Notify Re-caller

<<i
ncl

ude
>>

Figure 1: Return Books: Use Case Diagram

I assume that the ‘update’ use cases embeds search functionality. For example, in
order to update a loan record, it is to be searched using the available/suitable
parameters. And then the search resultant record details are displayed and available
for edit.

The ‘login’ and ‘log out’ use cases are used by the librarian to get in and out of the
system.

The loan and volume database for the returned copy of book are updated to close loan
entry and the book availability status, respectively.

The ‘pay fine’ use case calculates the fine and updates the user record by adjusting
the ‘accountValue’ attribute according to the fine policy.

 3

The ‘Search reservation’ use case is initiated to check if the returned book was
recalled by some other user and if so, then the ‘Notify re-caller’ use case is initiated.

The ‘create account’ use case is used to create a member user of the library. The
occurrence of this use case is least possible assuming high security and safe
implementation of the system functionality. So, there is a very minor chance that
customer records will be compromised.

Note: All these use cases are directly connected to the librarian. In order to avoid the
mess in the diagram, I haven’t connected the librarian to all of these using a line as I
have used for librarian to connect to ‘Return books’.

Plus, I know using any other notation will risk marks to be deducted but I have no
clue then how to show search and update as one use case.

c) A list of possible scenarios similar to that of 4.1- 4.6.

Answer:

1. This use case involves the actor ‘Librarian’.
2. This use case occurs when someone comes to return books and hands them to the

member of the library staff (Librarian) or returns books by post anonymously.
3. The pre-condition is composed of an individual who is registered with the library

and a collection of book titles.
4. The Librarian first logs into the system. (This involves a password.)
5. The Librarian attempts to locate the loans record (If the book is returned

anonymously the librarian would search for the loan record using volume
identifier of the book.)

6. If no loan record is found the use case terminates.
7. If loan record is found, and the user account involves outstanding fines, the pay

fine use case is initiated.
8. The librarian searches the reservations in order to check if the returned volume is

subject to recall notices involving other users then the re-caller is notified. The
reservations database is updated with the info that user is notified by updating the
notify date (that was initially set to be empty).

9. The librarian updates the book availability status.
10. The librarian closes the loan entry.
11. Success state changes include

(i) Updating the user account by modifying the ‘accountValue’ (fine levied)
(ii) Updating the volumes database, for books returned are marked by the System

as Available/reserved.
(iii) Updating the loans database by marking the loan entry to be closed and

noting the return date.
12. Point 11 represents the post-conditions of the main success scenario.
13. Notes:

 4

a) Books are distinguished from volumes in that a given book may be present
as several distinct volumes (multiple copies) in the library.

b) One identifies books by ISBN number, but volumes are identified using an
internal library code described as volume identifier here (Volume ID).

c) There are categories of users in the library which have correspondingly
different returning policies.

This use case description reveals that this analysis implies that other use cases are
involved in its execution. We could identify:

Log in
Search Loan
Update Loan
Search Volume
Update Volume
Pay Fine
Search Reservation
Notify Re-caller
Create Account
Log out

Assumption: The notifyDate is important as requirements specify that afters 3 days of
notification if the re-caller is not able to collect the books then these are returned to shelf
and marked available or issued if someone wants to loan them and the reservation is
cancelled.

d) Identification of the main success scenario.

Answer:

Main Success Scenario:

1. Librarian logs into system.
2. Librarian locates the loan record for the volume that is to be returned.
3. Librarian calculates fine.
4. Librarian updates user account for fine if return exceeded the due date.
5. Librarian searches reservations to check if the book was recalled by someone and

sends a notification to the user who made the reservation. Reservations database
is then updated with the notifyDate.

6. Librarian updates volumes database by updating book availability.
7. Librarian updates loans database by marking the loan entry to as closed.
8. Librarian logs out of system.

 5

e) A detailed use case description similar to the tabular one given in chapter four.

Answer:

Use Case Number: 2 Return Loan
Goal Handle the functionality associated with returning books.
Description Library user approaches Librarian with a verbal request to return books.

Librarian uses the system to locate the account of the user and update it
with a list of the volumes returned. No update is made if the account
does not exist. If the user owes money from fines then this is also taken
care of. If the returned books were recalled by someone else, then
reservations are made for it.

Actors

Constraints

Librarian – a privileged user who may:
§ update user loan information
§ create and delete user accounts
§ make reservation for books
§ update the record of library volumes

Librarian must log in to the system to use it. Librarian is a privileged
user and has a login password.

This use case must execute in under two minutes with a mean execution
time of one minute or less.
Librarian should be able to learn the associated activities in under one
hour.
Screen dialogs should be readable to people with averagely poor
eyesight.
Screen information should be printable and accessible to members of
the public.

Pre-
conditions

For the main success scenario these are:
§ An existing and valid user account showing books loaned
§ An user allocation that is not exhausted
§ The library is open for returning books
§ The library system is up and running

Main Success
Scenario

The librarian does successfully return the books by updating the user
account with information on the volumes returned. The scenario has
these stages.

1. Librarian logs into system.
2. Librarian locates the loan record for the volume that is to be

returned.
3. Librarian calculates fine.
4. Librarian updates user account for fine if return exceeded the

due date.

5. Librarian searches reservations database to check if the booked
was recalled by someone and notifies that user about the

 6

availability of the book. The reservations database is updated
with the notifyDate’.

6. Librarian updates book availability i.e. updates volumes
database.

7. Librarian updates loans database by marking the loan entry to as
closed.

8. Librarian logs out of system.
Post
conditions for
main success
scenario

§ The system records access by Librarian.
§ The volumes database is updated with return information.
§ The user account is updated with account information. (Adjusting

‘accountValue’ for fines if any liable.)
§ The loans database is updated by closing the loan entry.
§ The reservations database is updated.

Assumptions The Use Case will allow for one book at a time to be marked as
returned. The capability to mark multiple books at one time as returned
is not part of this Use Case.

Other
scenarios
(named in
brackets)

1. The user account is found not to be registered with the library.
(No user account. Might be deleted or compromised
accidentally?)

2. The user account is found to reflect money owed to the library or
to have outstanding overdue books. (Account debits / Pay fine.)

3. The library is not currently checking in books. (System
Failure/Holiday)

4. Information entered is not in valid format. (Incorrect format)
5. All mandatory fields are not provided. (Missing fields/info)

Related use
cases

Use case 5 – Log in
Use case 13 – Search Loan
Use case 8 – Pay fine
Use case 11– Update Loan
Use case 7 – Search Reservation
Use case 9 – Notify re-caller
Use case 14 – Search Volume
Use case 10 – Update Volume
Use case 12 – Update System Access (automatic logging)
Use case 3 – Create Account
Use case 6 – Log out

All of these use cases involve Librarian.

Frequency of
occurrence in
the system

The main success scenario is one of the two commonest scenarios in the
system (the other being Cancel Return). It represents about 46 per cent
of the activities involving Librarian.

 7

Test
generation

§ Each of the eight scenarios described must be tested.
§ The timing constraint is fairly lax but should be checked. In

practice it is unlikely to be an issue in this system but for
contractual reasons it may be appropriate to include auxiliary
code to collect data on how long issue clerks are taking to record
loans, when the alpha system is available, and this may have a
bearing on interface design.

Notes We assume that Librarian has no trouble getting into the system but any

password-protected system will occasionally cause problems. We
should check on library policy with respect to login problems.

The following terms are defined in the system glossary

§ Librarian
§ Account
§ Book
§ Volume
§ User
§ Loan
§ Reservation

 8

Question 2
Each part is worth 5 marks. [20 marks]

a) Construct an isolated walk -through for the Return Books use case (that
is, construct the walkthrough as if with no other knowledge of the
structure of the system). Report your walkthrough in the form of a
table similar to the one given in chapter five, (the Borrow Books use
case).

Answer:

The walkthrough based on the steps in ‘Return Books’ use case:

1. Librarian logs into system.

The librarian enters username and password information in order to get
into the system. This step initiates another use case called ‘log in’.

2. Librarian locates the loan record for the volume that is to be returned.

Once the user is located, next the librarian finds the loan record for the
book to be returned. This involves use case called ‘Search Loan’. Where
the loan record is searched using the volume ID, User ID and the issued
date of the copy of book.

3. Librarian calculates fine.
4. Librarian updates user account.

If the returned book copy has exceeded the return date then the fine is to
be levied.

Librarian calculates & adjusts fine using the ‘Pay fine’ use case and
updates the user database by updating the ‘account’ attribute.

5. Librarian searches reservations database to check if the book was recalled
by someone else and notifies that user by email and reservations database
is updated by noting the ‘notifyDate’.

This step involves the ‘Search Reservation’ & ‘Notify Re-caller’ use
cases.

6. Librarian updates book availability i.e. updates volumes database.

 9

Librarian opens the volumes record for this copy of book and marks the
book to be available or reserved. This step initiates the use cases ‘Search
Volume’ & ‘Update volume’.

7. Librarian updates loans database by marking the loan entry to as closed.

This step initiates the use case ‘Update Loan’.

8. Librarian logs out of system.

This step uses ‘Log out’ use case.

b) Using your walk-through, and any other information, suggest

candidate classes associated with the Return Books use case (do not
include classes that do not occur naturally as part of this restricted
analysis). Present arguments based on function and responsibility for
these classes.

Answer:

Candidate classes for the Porterhouse Library system:

§ Book
§ Volume
§ Catalogue
§ User
§ Loan
§ Reservation
§ Customer

Here I reason the classes stated above.

1. Book:

This class would be used for catalogue management of the library books
etc. We probably would need to update, check and search the library
stock, which would be involving querying and searching too. So we would
be implementing this with the help of relational database. This class would
be corresponding to the book database table by sending messages.

2. Volume
A book may have several copies and these are identified based on some
unique identification system or numbering like labelling them will volume
identifiers. A relational database table would be made for volume and this
class would interact with the volume database table.

 10

3. User
This class takes care of the information needed to be stored for the system
users or library staff. The permissions or capability attribute of this class
will define the user access level or type. This will interact with the User
database table.

4. Loan

When a book is lent to college students or staff, the information regarding
loan needs to be saved. This class will handle that by interacting with the
loans table.

5. Reservation

When a book is recalled by a library member, the system user will make a
reservation for that when the book is returned and notify the user when the
book is available and update reservations database by entering the
notifyDate.

6. Customer

The customers are different from the system users. The customers in this
case are the college staff and students. These have different attributes
associated with them for instance a student don’t need a user name and
password as he is not to use the system directly. Similarly, we might not
be interested in duplicating the librarian postal address details as we don’t
need it for the library management. These interact with the customer
database as well.

The above are the obvious classes. Now Lets go through the use case step by step,
analyzing it.

1. Librarian logs into system.

Step 1 indicates that a class/object is responsible for getting username and
password from the login screen, then sends it for verification and if it succeeds
then logs the user in to the system.

The User class defined above, stores the information of user name, password and
its capability. There needs to be another controller class that would manage all
interface links. That is which screen to bring next based on some conditions.

So we need a new class to control the conditional navigation of interfaces.

 11

2. Librarian locates the loan record for the volume that is to be returned.

Here the function of the loan class would be invoked and we have already
defined Loan class above.

3. Librarian calculates fine.
4. Librarian updates user account.

(Fine adjusted if return exceeded the due date and marks the book as returned)

This functionality will be handled by the loan class.

The user account that he would update will be of the library member, who is
defined as customer above. He might be a student or a staff member. So the
customer class also has two ‘kind of’ users, so two new classes identified.

5. Librarian searches reservations database to check if someone recalled this
book. If the book was recalled the re-caller would be notified via e-mail and
reservations database updated by noting down the notifyDate.

The search function of the reservation class would be used to find the info
from the reservations database. The reservation class has been mentioned
above.

The re-caller of the book will be notified and reservations database would be
updated. This would be done using the function of the reservation class.

6. Librarian updates book availability i.e. updates volumes database.

The function from volume class would be invoked and handle this updating of
book status.

7. Librarian updates loans database by marking the loan entry to as closed.

The loan database would be updated using the function of the loan class. The
loan class has already been identified above.

8. Librarian logs out of system.

The log in and log out will be taken care by a class who would be responsible for
interface displaying and navigation. This class would be called Admin.

 12

 The complete list of classes is as follows:

§ Book
§ Volume
§ Catalogue
§ User
§ Loan
§ Reservation
§ Customer
§ Student
§ Staff
§ Librarian
§ Manager
§ Admin

c) Represent your suggestions in the form of a class diagram, similar to
the one given in figure 5.1.

 13

+CheckUserDetails() : Boolean
-user : User

Admin

+checkLogin(in userName : String, in password : String) : Boolean

-userName : String
-password : String
-capabilities : String

User

+notifyRecaller(in customerID : String)

Librarian Manager

+getCustomer(in customerID : String) : Customer
+setCustomer(in customerID : String, in firstName : String, in lastName : String, in accountValue : Decimal)

-customerID : String
-firstName : String
-lastName : String
-accountValue : Decimal

Customer

Student Staff

+setAvailability(in volumeID : String, in Status : String)
+checkAvailabilityStatus(in ISBN : Integer) : String

-volumeID : String
Volume

+checkAvailability(in ISBN : Integer) : String

-ISBN : Integer
-Author : String
-Title : String

Book

+payFine(in returnDate : Date, in issueDate : Date)
+searchLoan(in CustomerID : String, in volumeID : String, in issueDate : Date) : Loan
+closeLoanEntry(in volumeID : String, in customerID : String, in issueDate : Date)

-issueDate : Date
-returnDate : Date
-status : String

Loan

+makeReservation(in ISBN : Integer, in CustomerID : String)
+searchReservation(in ISBN : Integer) : Boolean
+notifyRecaller(in customerID : String)
+cancelReservation(in notifyDate : Date)

-reservationDate : Date
-notifyDate : Date

Reservation

1

0..*

Knows_About

1..*

0..*
Manages

1

1..*

Head Librarian

Manages

1..*

1 Is_a_copy_of

1

1..*

issues1

1..*
makes

1..*

1

is_made_of_a

1

1..*

Is_made_for

1..*

1..*Manages

Figure 2: Library System - Class Diagram

 14

d) Construct initial CARC cards for every class identified by you in your
class diagram. These cards will not be complete, they will simply
represent you knowledge based on this initial analysis of a single use
case.

Admin	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses None
	

	

Description

	

	

The Admin object is intended as handling all
system dialogues. It controls user access on the
basis of passwords and pre-set capabilities by
displaying appropriate dialog frames offering
particular facilities.

Responsibility Collaborator Association
1. Knows all

the objects
in User
class.

2. Checks all
the
proffered
user name
and
password
with
members
of User
class

User Knows_About

a 1:* association

Interface
Methods

checkUserDetails():Boolean Called by the system
interface in response
to user name and
password submission

Notes: There will be a single object from this class in the system.
It will connect to the user interface and be the channel for user
communication with the system.

 15

User	<<abstract>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses 1. Librarian

2. Manager
	Description

	

	

The User class defines the general attributes and
behaviour that its sub classes have in common.

Responsibility Collaborator Association
1. Informs
Admin class if
a proffered
user name and
password
exists in the
system.

2. Knows
about the user
name and
passwords of
the sub class
users.

 Knows_about

a * : 1 association

Interface
Methods

checkLogin(username:string
, password:string):Boolean

Called by the admin
object to validate
user

 16

Librarian	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses User
Subclasses Head	Librarian

	Description

	

	

The Librarian object is intended to manage all
customers, reservations, volumes and loan
information. The librarian can add, update and
delete the customers. The librarian makes
reservations and issues loan. Librarian also updates
volume, customer, loan and reservations database.

Responsibility Collaborator Association
1. Knows
about all the
Loan class.

2. Knows
about all the
Reservation
class.

3. Knows
about all the
objects in the
Customer
class.

4. knows all
about the
Volume class

Loan

Reservation

Customer

Volume

Issues

a 1 : * association

makes

a 1: * association

manages

a * : * association

manages

a * : * association
Interface
Methods

checkLogin(username:string
, password:string):Boolean

Called by the admin
object to validate
user

 17

Manager	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses User
Subclasses None

	Description

	

	

The Manager object is intended to manage all
system users, access the systems logs and all other
privileged tasks.

Responsibility Collaborator Association

Interface
Methods

checkLogin(username:string
, password:string):Boolean

Called by the admin
object to validate
user

According to the given scenario of ‘Return books’ this class hasn’t been analyzed
in depth due to it no involvement in it.

 18

Head_Librarian	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses Librarian
Subclasses None

	Description

	

	

The Head Librarian is responsible for stock
management of books.

Responsibility Collaborator Association
1. Knows
about all the
Book class.

Book manages

a 1 : * association

Interface
Methods

checkLogin(username:string
, password:string):Boolean

Called by the admin
object to validate
user

 19

Book	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses None

	Description

	

	

The Book class is used for the catalogue management.

Responsibility Collaborator Association
1. Knows
about all the
Volume class.

2. Responds to
the
Reservation
object with the
ISBN number
of the
available
volume object

Is_a_copy_of

a 1 : *
association

Is_made_of

a 1 : *
association

Interface
Methods

checkAvailability(ISBN:integer):String Called by the
reservation
object to
check the
availability
of the copy
of a book
user and the
first
available
volumeID in
search is
returned

 20

Reservation	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses None

	Description

	

	

The Reservation class has the responsibility of managing
and updating reservation database.

Responsibility Collaborator Association
1. Knows
about all the
Book class.

2. Informs the
Librarian
object if a
volume of
book is
reserved or not

Book

Is_made_of

a * : 1
association

makes

a * : 1
association

Interface
Methods

makeReservation(ISBN:integer,
customerID:String)

Called by
the
Librarian
object make
reservation
for a
recalled
book

searchReservation(ISBN:interger):Boolean Called by
the
Librarian
object to
check if the
book was
recalled

 notifyRecaller(customerID:String) Called to

 21

notify the
re-caller
that book is
available

 cancelReservation(notifyDate:Date) Called to
cancel
reservation
if re-caller
wasn’t able
to collect
book with 3
days of
notified
date.

Volume	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses None

	Description

	

	

The Volume class has the responsibility of managing and
updating volumes database.

Responsibility Collaborator Association
1. Knows
about all the
Book class.

2. Informs the
Librarian
object if a
volume of
book is
reserved or not

Is_made_of

a * : 1
association

manages

a * : *
association

Interface
Methods

setAvailability(volumeID:String,
status:String)

Called by
the
Librarian
object to
update the
availability

 22

status of
volume

checkAvailabilityStatus(ISBN:interger):String Called by
the
Librarian
object to
check the
volume
availability
and the first
volumeID
in the
search is
returned

Loan	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses None

	Description

	

	

The Loan class has the responsibility of managing and
updating loan database.

Responsibility Collaborator Association
1. Knows
about all the
Volume class.

2. Informs the
Librarian
object if a
volume of
book is loaned
or not

Is_made_for

a 1 : *
association

issues

a * : 1
association

Interface
Methods

Payfine(returnDate:Date, issueDate:Date) Called by
the
Librarian
object to
calculate

 23

fine and
update the
user account
value

searchLoan(customerID:String,
volumeID:String, issueDate:Date):Loan

Called by
the
Librarian
object to get
the loan
entry

 closeLoanEntry(volumeID:String,
customerID:String, issueDate:Date)

Called by
the librarian
object to
close a loan
entry.

Customer	<<abstract>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses None
Subclasses 1. Student

2. Staff

	Description

	

	

The customer class defines the common behaviour
that both its sub classes possess.

Responsibility Collaborator Association
1. Knows
about all the
student class.

2. Knows
about all the
staff class.

3. Informs the
Librarian
object of

manages

a * : *

 24

requested
customer info.

association

Interface
Methods

getCustomer(customerID:string
):Customer

Called by the
librarian object
to get customer
details and a
customer
object is
returned

 setCustomer(customerID:String,
firstName:String,lastName:String,
accountValue:Decimal)

Called by the
librarian object
to create a
customer.

Student	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar
Superclasses Customer
Subclasses None

	Description

	

	

The student class deals with all the specialized
attributes and behaviour related to the students.

Responsibility Collaborator Association

Interface
Methods

Staff	<<concrete>>
Date 25/06/08
Version		 1
Author Ayesha	Asghar

 25

Superclasses Customer
Subclasses None

	Description

	

	

The staff class deals with all the specialized
attributes and behaviour related to the staff.

Responsibility Collaborator Association

Interface
Methods

According to the given scenario of ‘Return books’ student and staff hasn’t been
analyzed in depth due to it no involvement in it as customer itself is not reserving
the book but the librarian is.

 26

Question 3

Construct sequence diagram(s) relating to the messages associated with Return Books
use case. You may assume the interface outlined in chapter six and you do not need to
worry about library staff logging in to the system. You must be clear about which objects
are generating the messages and to what effect. You should present accounts of all of the
messages appearing in your sequence diagram - including their identifiers, parameters
and returns types and giving an informal description of what exactly they achieve. You
may find the notes on method specification given in chapter nine useful for this. You do
not need to include detailed specifications of helper methods associated with these
messages (that is, messages they themselves generate) but their functionality should be
described. Be careful not to confuse the physical activity of returning books with the
software activities associated with it. [20 marks]

Book Check-in
Frame

adminobj:Admin userobj:User Loan Details
Frame

Notfiy Recaller
Frame

resobj:Reservation volobj:Volume

checkLogin(userName,password)

true

lobj:Loan

displayBookCheckinFrame()

checkLoanDetails()

searchLoan(customerID,volumeID,issueDate)
true

displayLoanDetailsFrame()

checkFineDetails()

payFine(returnDate,issueDate)

checkReservationDetails()

searchReservation(ISBN)

closeLoanDisplayFrame()

true

displayNotifyRecallerFrame()

checkRecallerDetails()

notifyRecaller(customerID)

closeNotifyRecallerFrame()

checkStatusDetails()

setAvailability(volumeID,status)

checkLoanDetails()

closeLoanEntry(volumeID,customerID,issueDate)

Once the notifyRecaller function has executed successfully the
admin object closed the notfyrecallerer screen after confirming
from the user

Once the payFine function has executed
successfully the admin object closes the
loanDisplay screen after confirming from user

Figure 3: Return Book - Sequence Diagram

 27

(Note: I have also attached a jpeg image of the sequence diagram separately in the
assignment folder.)

Question 4

This question asks you to review your experience of unit four critically. If you have
experience of other methodologies, you may wish to bring that in here, but that is not
strictly essential. The assignment is rather open -ended, we are more concerned with the
force of your answers than right or wrong solutions. Note that this question is worth 40%
of the total mark for the assignment. [40 marks]

Software construction using Objects outlines an approach to the analysis and design of
systems based on object oriented ideas.

a) Construct a two hundred word summary of the approach used. Your
summary should reference Software construction using Objects. [10 marks]

Answer

Below are mentioned the steps that the approach used in course material follows:

Identification of use cases

§ One can possibly start identifying the use cases by looking at the verbs used in
the system specification.

§ The activities that the system is supposed to perform are chalked out as use
cases.

§ The person who carries out the activity also called as an actor is identified.
§ The success scenario, possible failure events are also identified.
§ Any pre-requisites that are required by the user to perform the activity are also

listed.
§ Once the activity is performed, what affects it has on the system, these are

also recorded.
§ Any assumptions, related use cases (the ones this use case would initiate or

use), limitations, occurrence and any notes are also written down.
§ A use case diagram is also drawn to graphically represent an actor connected

to the use case he performs and any related use cases.
§ The information is thoroughly reviewed through out in this process in order to

clear any ambiguity. At times you might need to rename a use case to better
suit it with the function it performs.

§ A use case can also be graphically represented by an activity diagram. An
activity diagram divides the scenario between the actor and the system and
how the flow of events occurs in order to achieve the task that a use case is
supposed to perform.

 28

Identification of Classes/Objects

§ Next the classes are identified after looking at all the use cases and its relevant
information.

§ In order to find out any classes that weren’t obvious in the use cases, one
conducts walkthrough of the use cases. Each step of a use case is to be
analyzed and a decision it to be made that which class would be performing
them.

§ The association, collaboration, responsibilities of the classes are identified.
Their attributes and methods are also listed. Once all of this is identified, a
class diagram is drawn.

§ Next CARC cards are made for each class, in order to show textually its
responsibilities, associations, collaborators. The CARC cards are updated
through out the process and their versions are maintained. Any super classes,
sub classes and interface methods of the class are also noted in them.

§ A system glossary is also maintained to define all the terms used in system
analysis.

Interfacing

§ Wireframes/screens are built for trialling. These are shown to the customer for
any feedback.

§ In order to better understand the flow of messages between classes and to
represent interface design, sequence diagrams are drawn.

§ In the process of drawing sequence diagrams for use cases, you might be able
to find any missing class association, responsibility or method that you might
need.

Database

§ Next one needs to decide for data storage either to use object oriented
databases or relational databases. The scenario here required relational
databases.

Business work flows

§ A better understanding of business work flows is gained through drawing
state diagrams. The state diagrams help to analyze the different states an
object might take in response to messages sent to them. Any missing links
can be figured out here.

Testing

§ Static testing is used by conducting walkthroughs through the analysis and
design artefacts.

 29

b) Suggest a software development which, in your view, would not be best

treated using the techniques described in Software construction using
Objects. Your answer should:

i. Offer an outline account of the system needed in half a page.

Answer

A local gift shop wants to upgrade its sales and purchase system.

1. Sales Capture

The system would be recording all the sales that will be taking place along
with inventory and sales updating i.e. updating the amount of items left of a
particular product that is being sold.

§ Cashier should be able to enter the product codes manually or be
entered via a barcode scanner.

§ Description and price of that item will be loaded.
§ Quantity or number of item bought should be entered by the user

against each item.
§ System should calculate current sales total including tax.
§ System should reduce inventory quantity when a sale is committed.
§ Storage of the entire sale invoices.

2. Payment Authorization

The system will acquire the user of mode of payment i.e. either cash or credit
card. It will accept cash as well as credit card payments and for verification of
the credit cards it will consult an external system.

3. Handling returns

If a user wants to return some item, then the following two options would be
available to him.

i. He can exchange the purchased goods for some other good with the
same price and the stocks of the respective goods would be updated
accordingly.

ii. On returning the good he can get his money back and the stocks and
the total sales would be updated.

4. System Administration

§ Login Facility to ensure security.
§ Manage all the users using the different aspects of the entire system.

 30

§ Assigning and managing product codes for easy reference of product.

5. Handling Stock

Inventory is updated in the following 3 scenarios:

§ Inventory will be automatically updated on every transaction.
§ Proper inventory updating i.e. incrementing/decrementing number of

items of any commodity depending upon supplies from suppliers.
§ Updating price of any commodity with respect to the demand and

supply.

6. Report Generation

Following reports would be generated

§ Daily, weekly and monthly sales transaction reports.
§ Inventory reports.

ii. Present a clear argument supporting your view. [10 marks]

Answer

§ Changing from a traditional development model to an object-oriented

approach is costly and should not be dismissed lightly.
§ The costly nature of adopting this Object Oriented paradigm
§ This change requires the infamous paradigm shift, meaning you have

to completely change your way of thinking and change your business
processes as well as invest in training in order to ensure the staff is
ready to accommodate the changes. This requires an investment in not
only money but time.

§ When developing new systems, several developers may be working on
a project studying class libraries to find the common objects, or the
objects themselves may be in development and not available for use,
making it difficult to share the components throughout the new
system.

§ In using classes and objects in future development efforts, you cannot
assume classes are automatically reusable. Instead, inheritance is
dependent on a set of rules. It is important to remember, however, that
no method eliminates all problems associated with reusability and no
method can entirely eliminate all concerns.

 31

§ There is some question as the appropriateness of applying object-
oriented techniques to legacy software. Object-oriented methodology
starts with the object and this object drives the definition of further
needs. With legacy system, the data and its associated model already
exist. You also have analysts steeped in traditional methodology more
comfortable building the data model first. The good news is that once
an analyst uses an object-oriented approach he is resistant to going
back to traditional methods.

§ In order to adopt this methodology, the business should invest in
training for all individuals involved in the analysis process and slowly
integrate the process by using it in low-risk projects first to allow the
analysts to learn from their mistakes. Successful adoption of this
methodology lies in commitment, training, and experience.

§ A study by Potok et al has shown no significant difference in
productivity between OOP and procedural approaches.

§ OOP technology has generated more confusion than almost any other
computer technology. For example, many OOP "experts" claim that
most companies are either not using OOP properly, or are not taking
advantage of OOP. Experts also say that there is a long learning curve
before many people grasp the power of OOP; that its benefits can't
really be taught, at least not understood, from a book. It has almost
become like Quantum Physics, in which only a small elite group
appears to understand it properly, and everybody else needs years of
meditation and practice.

§ Persistent storage (databases) is especially in turmoil in the OOP
world. Some experts say that a company cannot get the benefits of
OOP without using Object-Oriented Database systems; others say that
companies need to hire "middle-layer" experts to convert conventional
databases into virtual OO databases for other programmers. However,
there are very few books on database connections to OOP (relative to
other OOP titles), and probably fewer experts.

§ OOP generally does not map well to relational databases (RDBMS).
Using relational tables with OOP often requires converting (mapping)
fields into objects and visa-verse when putting them back into the
tables. This is a painstaking process and can waste a lot of
programming time.

§ Data in traditional relational form is relatively easy to transfer to
different systems as technology and vendors change. Procedures are
not easy to transfer. If you mix the data in with methods, then you are
stuck with the current OO programming language to interpret your
data. You cannot easily read the data except with the OOP language
and/or program that generated it.

§ One of the biggest differences between OO and procedural/relational
is that OO tends to group operations around nouns (entities), while
procedural tends to group around tasks/activities (at least the code

 32

part). I tend to find task grouping more "invariant" (stable) than noun
grouping.

§ OO is more suitable for ecommerce applications or applications
involving complex data types.

§ OO does not support component based development.

c) Suggest two potential weaknesses to the Software construction using Objects
approach to analysis and design - illustrating your answer with examples
based on the library system described. Write no more than 700 words. (You
may include diagrams, we expect you to refer to course material, and you
may also refer to your answers in the first two parts of this question). [20
marks]

Answer:
Object methodology has many benefits but at the same time it is not without its
failings. Some of its weaknesses are being addressed but at a rather slow pace.

The weaknesses in object methodology are not mainly technical but its slow
absorption by users in applying the methodology into existing systems development.

Some of the weaknesses are:-

1. Lack of system decomposition – Decomposition is important because many

systems are too large to be developed by one team in order to meet the deadline.
Therefore, systems need to be broken down into smaller components that can be
assigned to multiple teams to be worked on concurrently. Decomposition needs to
be initiated at an early stage of the development process. Decomposition must
have a strong connection between components to allow smooth integration of the
components at a later stage. In OO methodologies there are difficulties in
breaking systems down into smaller components.

There is a possibility that the college is in a hurry to get the system done or to put
it in a better way, saving time though incurring costs. The components of the
systems can be made and developed in parallel. Structured programming supports
components based programming and is best suited for this situation.

In contrast to component-based systems, object-oriented systems are arranged, for
the most part, in class hierarchies. The nature of this arrangement means that
classes at lower levels inherit characteristics and processes from the parent classes
above them. This makes it difficult to reuse these classes in different

 33

environments or combinations since reuse depends first on inheritance, and
secondarily on encapsulation. It also tends to curb information hiding, since object
users must understand how characteristics and processes inherited from parent
classes are implemented in child classes.

Since components are independent from one another, there are no inheritance
concerns. Encapsulation hides the way a component's behaviour is implemented
so clients needn't know the details behind a behaviour’s implementation. Ideally,
components that share the same interface should be interchangeable; a single
component with a well-defined interface can plug into multiple environments.
Therefore, component reusability depends almost entirely on encapsulation.

CBD (Component based development) provides a number of advantages to
business. Components bring unprecedented flexibility to application development
as they can be added, removed, or changed without disruption to the system.

This is especially useful in multi-tier applications where business processes may
change faster than the application. Components cut the need for extensive, time-
consuming upgrades. They offer a presentation channel, back-end application, and
database independence that allow developers to look at or work with single
components without disturbing the entire system, allowing a more rapid response
to changes in business.

The methods for designing CBD solutions help an organization maintain its focus
on the major pieces of its domain, and the interaction of those pieces.
A component management and assembly infrastructure can knit together all the
pieces specified, built and acquired, even when each has been developed using
different people or different technologies.

Efficiency also increases through the reuse of component code and technical
standards. Additional benefits accrue as components give developers the freedom
to concentrate on business challenges rather than having to contend with low-level
middle-ware services. CBD can even make a competitive advantage of a
company's application delivery, since faster development and easier maintenance
of existing functionality are built-in benefits.

Components end the struggle to design, develop, test, and debug systems. This, of
course, shortens overall development time and reduces cost. It's an optimal time
for companies to consider CBD as an alternative to Object-Oriented Application
Development (OOAD) since it has evolved sufficiently from OOAD, and proven
its functionality.

The loan and return of books can be the two major components of the system,
which are to be developed in parallel and isolation but using OO approach this
would not be possible. As in OO approach all the objects form one system in

 34

which they are related and connected. OO makes component development
difficult.

2. Lack of end-to-end process modelling – According to Fichman and Kemerer,
global processes, which involve forward and backward execution of intermediate
steps between start and end, exist in many problem domains. Although OO
methodologies use operations to model parts of the process, there is no specific
model to describe global processes. Therefore, a separate tool is required to
arrange different encapsulated operations into a model that describes global
processes.

3. Lack of supporting programming languages /programming skills in OO –

Although OO methodologies can be implemented using traditional programming
languages, special languages supporting OO features are needed to facilitate the
implementation of the OO systems. OO programming languages must have the
ability to create classes, objects, subclasses {through inheritance), and to support
messaging and dynamic binding. Only recently that programming languages such
as JAVA and C++ are beginning to be widely used by organizations especially
with the proliferation of the Internet. Many organizations cannot benefit from the
use of OO methodologies until there are sufficient trained programmers who are
skilful in OO programming and methodology.

As mentioned in answer of part (ii), OO requires skilled resources.

Changing from a traditional development model to an object-oriented approach is
costly and should not be dismissed lightly. Therefore, the nature of adopting this
Object Oriented paradigm is costly.

This change requires the infamous paradigm shift, meaning you have to
completely change your way of thinking and change your business processes as
well as invest in training in order to ensure the staff is ready to accommodate the
changes. This requires an investment in not only money but time.

4. Lack of supporting databases and tools – OO databases are required to store
objects permanently on files. Currently, there are not many data base management
systems that can handle applications such as CAD/CAM, which require many
complex objects to be created and stored. Quality OO tools is needed to automate
the analysis and design processes. Currently there are some OODBMS such as
GEMSTORE, O2, JASMINE, etc., but user awareness or extensive usage is still
limited.

Most OODBs suffer from the lack of query facilities. In those few systems that
provide significant query facilities, the query language is not ANSI SQL
compatible. The query facilities do not include nested sub-queries, set queries

 35

(union, intersection, difference), aggregation functions and GROUP BY, or joins
of multiple classes –facilities fully supported in the RDBs.

While RDBs support authorization, most OODBs do not support authorization.
RDBs allow users to grant and revoke privileges to read or change the definitions
and tuples in relations and views

Some OODBs require users to explicitly set and release locks. RDBs
automatically set and release locks in user processing query and update
statements.

In an RDBMS modifying the database schema either by creating, updating or
deleting tables is typically independent of the actual application. In an OODBMS
based application modifying the schema by creating, updating or modifying a
persistent class typically means that changes have to be made to the other classes
in the application that interact with instances of that class. This typically means
that all schema changes in an OODBMS will involve a system wide recompile.
Also updating all the instance objects within the database can take an extended
period of time depending on the size of the database.

An OODBMS is typically tied to a specific language via a specific API. This
means that data in an OODBMS is typically only accessible from a specific
language using a specific API, which is typically not the case with an RDBMS.

As in the library case example, we decided to a relational database due to the
factors that OODB requires training costs. Plus, it doesn’t support a lot of features
that are mentioned above, where as relational databases provide these facilities
and it is being used by many programmers for several years.

5. Lack of reusable software – Software reusability claimed by OO methodologies
may be difficult to implement and achieve. Pre-defined objects need to be well
catalogued, documented, and easy to understand to facilitate their reuse. DCOM
and CORBA are two examples of OO software architecture that addresses
reusable component issues, but again the application is not widespread.
Companies have to make a strong commitment to change to these new
methodologies in order for them to be implemented. Investment at the front end
must be made in order to reap the benefits from this new approach. Software
components must be carefully designed to allow future reusability. The whole
organization must be involved in identifying and designing organization-wide
objects which help to establish the basis for stable, long term systems. Increased
training costs are required for this approach.

 36

References

[Booch, 1991]
Booch, G. (1991). Object-Oriented Design: With Applications. Redwood City, CA, USA:
Benjamin/Cummings.

[Conger, 1994]
Sue Conger, The New Software Engineering,ITP 1994, pp. 39-40.

[Fichman & Kemerer, 1992]
Fichman, R.G. and Kemerer, C.F., (1992) "Object-Oriented and Conventional Analysis
and Design Methodologies: Comparison and Critique," IEEE Computer, 25(10), 22-39.

[Ghezi et al, 1991]
C. Ghezzi, M. Jazayeri and D. Mandrioli,Fundamentals of Software Engineering,
Prentice Hall, 1991.

[Potok et al, 1999]
Thomas E. Potok, Mladen Vouk, and Andy Rindos. “Productivity Analysis of Object-
Oriented Software Developed in a Commercial Environment.” Software – Practice and
Experience, Vol. 29, No. 10, pp 833-847, 1999. Available at world wide web at:
http://www.csm.ornl.gov/~v8q/Homepage/Papers%20Old/spetep-%20printable.pdf

[Pressman, 1997]
Roger S. Pressman, “Software Engineering – A Practitioner’s Approach”, McGraw Hill
1997, p. 278.

[Schach, 1996]
Schach, Classical and Object-Oriented Software Engineering, 3rd. Ed., IRWIN, 1996.

[Sommerville, 1992]
I. Sommerville, Software Engineering, Addison- Wesley, 1992.

